请选择 进入手机版 | 继续访问电脑版

IMS基板在GaN功率器件/模块中使用时,目前未见有独特的结构设计。IMS基板是通过底部金属基板进行散热,表面电路层和底部金属基板之间的绝缘层是热量传递的主要障碍。IMS基板热阻略高于DBC基板,是其热阻的1.5倍;但远低于PCB基板的热阻。值得注意的是,即使使用PCB嵌入式铜块设计,其热阻依然在IMS基板热阻的2倍以上。

将上述 PCB、DBC、IMS 三种基板进行综合比较,不难发现,对于 PCB 来讲,热通孔设计、嵌入式铜块设计与垂直环路磁相消设计很难做到同时兼顾。多层 DBC 的结构虽然能同时保证散热和低杂散电感的要求,但设计复杂且制作难度大。相比于 PCB 基板和 DBC 基板,IMS 基板显示出其独特的优势。它不需要复杂的布局和设计,就能同时实现较低的热阻和较小的杂散电感。这也是目前 IMS 基板并没有独特结构设计的原因。此外,IMS 基板还有较低的制作加工成本以及较高设计灵活性的优势。图 13 从设计灵活性、抗电寄生性能、散热性能、系统成本四个方面,将 GaN 功率器件/模块中常用的三种基板进行了综合比较。

3.2 近结被动冷却封装结构

在前文介绍到的远结被动冷却封装结构中,热量从芯片产生,经过封装基体传递到外界环境。然而对于整个封装体结构,有 67%的热阻来自于芯片以外的封装基体(焊料、灌封材料、基板、导热胶等)。因此,区别于远结被动冷却,许多研究人员考虑近结被动冷却,即通过封装的结构设计,使得热量的传递路径不经过封装基体,一经产生就被热沉传递出去。近结被动冷却主要是通过增加芯片的散热面积达到降低热阻的目的。例如,2012 年,中国台湾交通大学(National Chiao Tung University, China)开展了直接在热沉上连接芯片的研究[49]。如图 14(b)所示,在热沉结构上制作 V 型凹槽,将 E 型 GaNHEMT 置入其中并使用导热银胶填充,通过增加芯片的横向散热路径,增大芯片整体的散热面积。然而通常 GaN 芯片的厚度较小(GaN System公司 GS-065-150-1-D 款 E 型 GaN HEMT 厚度264.5μm),增加的芯片侧面散热面积并不大,同时芯片与热沉结构之间的导热界面材料依然是热量传递过程中的阻碍。所以这种结构的散热效果并不显著。

值得注意的是,近来,扇出式(fan-out)晶圆级封装由于具有更低的热阻,更高的功率密度而备受关注。因此,许多研究人员考虑将 fan-out晶圆级封装的理念引入到 GaN 模块封装中。例如,2012 年,美国休斯研究室直接在 E 型 GaN HEMT 背面电镀金属形成热沉结构。如图14(c)所示,这种结构可以节省导热界面材料的使用,进一步降低热阻,最大可以使芯片结温下降 100℃。2018 年,德国弗劳恩霍夫可靠性与微集成研究所使用扇出型封装形式制作了650V GaN 半桥功率模块。但目前尚未见到对高压氮化镓 fan-out 晶圆级封装的报道。这可能是因为极小的引脚间距尚无法满足高电压下安全爬电距离的设计要求。此外,氮化镓 fan-out 晶圆级封装目前也仅用在低功率场合。虽然在 2020年,德国弗劳恩霍夫可靠性与微集成研究所提出了 GaN 射频功率器件的 fan-out 晶圆级封装设计,并成功研制出实验室样品,但其晶圆级封装器件抗功率循环、抗温度循环的可靠性有待进一步验证。

3.3 近结主动冷却封装结构

首先区分主动冷却与被动冷却:主动冷却通常安装散热部件,借助外力增加热传递的效率。接下来介绍的近结主动冷却是在消除封装基体的基础之上(即近结冷却),增加主动散热的方式。例如,2011 年,日本松下电气公司就已开展了在 GaN 功率器件中使用冷却循环系统的散热研究。2016 年,美国洛克希德·马丁任务系统与训练分公司也开展了 GaN 功率模块中制作嵌入式微流道结构的研究。如图 15(a)所示,嵌入式微流道结构完全消除了金属热沉。通过冷却液直接接触金属衬底将热量带走,可以使芯片结温最大下降 55%。但是微流体对芯片背部的冲击作用不可忽视,它会造成芯片的损伤。如图15(b)所示,将 GaN 芯片封装到一个冷却循环系统框架中可以消除微流体对芯片的冲击。冷却循环系统分为三个部分:蒸发段、冷凝段、回流段。在蒸发段,空腔内部的乙醇液体直接接触芯片的背部,吸收芯片产生的热量蒸发成汽态并挥发到壳体上部。在冷凝段,由于风扇不断向散热片吹入空气进行强制热对流,汽态乙醇受冷重新凝结为小液滴。在回流段,冷凝后的乙醇小液滴受壳体内部针状结构毛细吸引力作用,汇聚到回流通道,形成大的乙醇液滴并流回蒸发段,这样形成一个循环。如此不断重复,完成冷却循环系统的导热过程。该结构与传统的封装结构相比,热阻下降 32%。近结主动冷却封装结构能极大降低封装结构的热阻,但往往尺寸较大,且设计制造复杂。

3.4 小结与展望

远结冷却结构与近结冷却结构的本质区别是:热量经芯片产生传递到热沉的过程中是否通过封装基体。近结冷却相比于远结冷却,消除了封装基体,极大降低整体结构的热阻。主动冷却相比于被动冷却,使用液冷的方式提升了热量的传递效率。远结被动冷却结构主要着重于对基板的改进设计。PCB 基板遵循着从增强表面横向散热、增强纵向散热到横向散热和纵向散热混合使用的设计思路。DBC 基板则主要着重于开发双面散热结构。近结被动冷却结构遵循增加芯片散热面积的思路,从基板上制作 V 型凹槽到在芯片背部直接电镀热沉结构的 fan-out 晶圆级封装,都通过增加芯片的侧向散热路径来增大芯片的散热面积。制作 V 型凹槽这种方法由于芯片厚度小,且芯片与热沉之间的导热胶阻碍热量传递,对散热性能提升的效果并不显著。近结主动冷却结构设计了嵌入式微流道和冷却循环系统两种结构,虽然极大降低了结温,但是这两种结构尺寸大、制作复杂,抗机械冲击可靠性低。

综上所述,远结被动冷却仍然是 GaN 功率器件/模块主要使用的封装结构。其中双面 DBC散热结构因具有更低的热阻,将会成为主流的封装结构。

4 封装连接可靠性

GaN 功率器件/模块的封装连接可靠性风险主要集中封装连接层。包括连接层材料的开裂,引线键合脱落或断裂等。失效产生的原因是连接层材料和引线键合界面的热机械疲劳损伤。此外,考虑到 GaN 的耐高温应用特性,随着工作时间的增加,连接层材料会产生热蠕变疲劳损伤。而在实际的工作过程中,热机械疲劳损伤和热蠕变疲劳损伤会产生耦合作用。热蠕变促进了连接层材料微裂纹的萌生和扩展,热机械应力又提高了热蠕变的程度。这种耦合作用会加剧连接层材料失效的风险。因此,本文接下来将主要介绍如何提高 GaN 功率器件/模块封装连接层的热机械疲劳失效与热蠕变疲劳失效抗性。目前未见对 GaN 功率器件/模块中引线失效以及增强引线失效抗性的相关报道。

4.1 热蠕变疲劳失效

对于大多数连接材料来讲,在长时间的高温工作过程中会有蠕变疲劳失效的风险。工作温度为0.6Tm是连接材料蠕变变形的临界状态(Tm:焊料熔点),当温度超过0.6Tm,蠕变变形机制开始起作用,并逐渐占据主导地位;当工作温度超过0.8Tm,连接材料会因为蠕变造成晶界滑移,产生塑性变形而快速开裂失效。目前,在低温段工作的GaN功率器件/模块中常用的高温焊料是金基焊料和高铅焊料。然而随着研究的不断进展,最新研制的GaN HEMT可以在325℃下稳定工作,所以要求芯片连接材料的熔点至少在400℃以上。如图16所示,在功率器件/模块中常用的金基焊料都不能满足更高的工作温度要求。同时,合金焊料在长时间的高温工作条件下,连接 界 面 处 脆 性 金 属 间 化 合 物 生 长 严 重 。以Au80Sn20为例,在240℃条件下保存72h,脆性金属间化合物Au-Ni-Sn生长大约1.6m,造成连接层抗剪强度的下降,进一步增加了连接层热蠕变疲劳失效的风险。此外,由于ROHS指令对焊料无铅化的要求,高铅焊料也会被逐渐替代。因此,目前迫切需要开发熔点更高,同时在高温下保证高可靠性的焊料,以充分保证GaN器件/模块的工作可靠性。

在 GaN 功率器件/模块中,目前流行的两种芯片连接技术是瞬时液相 (Transient liquid phase, TLP) 连 接 和 低 温 连 接 技 术 (Low temperature joining technique, LTJT)。其中瞬时液相连接技术以锡银的瞬时液相 (简称 Sn Ag TLP)连接应用最多,低温连接技术以烧结银应用最多。

TLP 连接技术通常是指在连接金属表面镀覆低熔点金属作为中间层材料,在适当压力下加热至熔点。低熔点中间层材料和高熔点金属发生固-液互扩散现象,生成高熔点的连接层,实现低温连接、耐高温工作的应用条件。当使用Sn、Ag 作为中间层材料时,Sn 在熔点 232℃下熔化并扩散到 Ag 中与 Ag 生成高熔点的二元合金ζ相 Ag85Sn15(Tm≻600℃),连接界面完整、无孔洞,而且不需要助焊剂。例如,2015 年,德国弗莱堡大学最先开展了 Sn Ag TLP 连接在GaN 芯片封装中的应用研究。然而该方法成本高、时间长,不利于商业化应用。对于 Sn Ag TLP 连接在 GaN 功率器件/模块中的应用研究尚处于起步阶段,目前未见对其高温蠕变疲劳失效的研究报道。这可能与生成的金属间化合物具有较明显脆性,疲劳失效的风险仍然显著有关。

近年来,LTJT 技术,尤其是低温烧结银连接技术受到广泛关注。烧结银以其 961℃的高熔点,低焊接温度的优势,成为替代 Au80Sn20 和高铅焊料、应用在 Cascode GaN HEMT、E 型GaN HEMT 功率器件/模块中芯片连接的主要候选 材 料 。早 在 2013 年 , 天 津 大 学 (Tianjin University, China)就开展了烧结银在高温下的蠕变疲劳行为研究。研究证实烧结银具有较高的热蠕变疲劳失效抗性,适合在 GaN 功率器件/模块中使用。

4.2 热机械疲劳失效

如图 17(a)、(b)所示,由于不同材料的热膨胀系数不同,在温度的变化过程中,材料的收缩程度就会不同,在界面处会产生交变的热机械应力。热机械应力的表现形式是平行于连接界面的剪切力。剪切力又会使不同材料产生不同程度的塑性变形。随着循环次数的增多,连接层界面材料塑性变形不断累积,产生热机械疲劳失效。在 GaN 功率器件/模块中,由于 CTE 不匹配造成界面开裂失效的位置有两处,芯片与基板连接层以及 DBC 基板的铜与陶瓷连接层。对于芯片与基板连接层如图 17(c)所示,其应力和塑性功密度的最大值位于芯片连接层靠近 DBC 的边角处。因此,此处最易萌生裂纹,造成分层开裂现象。对于 DBC 基板,如图 17(d)所示,其在高温使用的过程中,高温工作条件下易发生铜层脱落的现象。此外,从图中可以看出 DBC基板的氧化现象十分严重。

值得一提的是,前文提到的烧结银和Sn AgTLP都具有非常高的热机械疲劳抗性,可以有效的抑制芯片连接层发生分层断裂。在温度循环老化条件下,烧结银的可靠性都要优于Au80Sn20和Pb5Sn焊料,因为温度循环次数的增加,烧结银接头的烧结颈不断变粗,使得接头的连接强度变大。如图18(a)—(c)所示为烧结银接头在温度循环作 老 化 条 件 下 烧 结 颈 不 断 粗 化 的 现 象 。而Au80Sn20、Pb5Sn接头在温度循环的过程中,脆性金属间化合物生长加厚,从而造成接头的抗剪强度的下降。如图18(d)—(f)所示为Pb5Sn接头在温度循环老化条件下界面金属间化合物增厚同时出现孔洞的现象。2015年,德国弗莱堡大学将低温烧结银连接和Sn Ag TLP连接在可靠性方面进行了比较,两者在功率循环和温度循环作用下都表现出优异的可靠性,且优于金基焊料和锡铅焊料。

为了抑制芯片连接层的断裂,2018年,日本大阪大学从芯片连接层的结构上进行改进,提出了烧结银-W-烧结银的三明治式结构[28]。图19是芯片连接层从高温冷却至室温时的应力变化行为,利用W薄膜高弹性的特点,使其分担芯片连接层和基板界面处的界面应力,同时使得烧结银和基板连接界面处的应力方向重合,界面处材料的塑性应变下降大约50%。

为了抑制 DBC 基板在使用过程中发生铜层脱落的现象,2018 年,日本大阪大学开展了GaN 模块中 DBA 基板表面镀 Ni 的应用研究。如图 20(a)、(b)所示,将 GaN 芯片连接到DBA 基板上后,发现在温度循环老化条件下DBA 基板开裂。这是因为 Al 晶粒在高温作用下会粗化长大,而且铝的杨氏模量低,容易发生塑性变形。这使得烧结银和 DBA 基板的连接界面在工作中会有裂纹萌生并扩展,从而造成界面开裂现象。为此,作者在 DBA 基板表面镀厚Ni 层(7μm)。如图 20(c)、(d)所示,Ni 在高温作用下,晶粒长大的不明显,可以抑制 Al 晶粒的粗化。在 GaN 功率器件/模块中使用 DBA 基板表面镀 Ni 代替 DBC 基板,避免了基板铜层脱落的风险,同时提高了连接界面的可靠性。

4.3 小结与展望

为了解决热蠕变疲劳失效的问题,研究人员已提出了采用低温烧结银连接材料技术和 Sn AgTLP 连接材料技术。这两种材料同时具有较高的热蠕变疲劳以及热机械疲劳失效抗性,应是未来研究的热点。为了解决热机械疲劳失效的问题,研究人员还提出改变芯片连接层的结构以及在基板表面镀 Ni 两种方法。“Ag-W-Ag”三明治式结构虽然能大幅降低界面处连接材料的塑性应变,但结构复杂,实际操作困难。DBA 基板表面镀Ni 这种方法简单有效,明显降低了基板表面附层脱落的风险。

5 GaN 功率器件/模块封装技术的思考

尽管 GaN 功率器件/模块的封装技术是当前研究热点,在降低杂散电感、封装散热结构设计和提升封装连接可靠性等方面也已引起广泛关注 。2018 年 , 美 国 阿 肯 色 大 学 (Uniersity ofArkansas, USA)研究团队[65]最先发表了先进 GaN器件封装与集成研究综述,从芯片级封装、模块级封装与集成和封装热管理三个方面提出 GaN封装技术面临的挑战,并指出当下需要重点研究的三大问题:(1)降低 GaN 器件功率环路和驱动环路的杂散电感;(2)优化 GaN 集成模块开关性能;(3)提出更有效的热管理方案。目前,针对这三个问题都有许多效果显著的解决方案,已经在文中进行阐述。然而仍存在大量亟待解决的问题以及研究空白,处于刚起步阶段。

1)双面 DBC 散热结构、芯片嵌入式结构和带有 PCB 插入器的 GaN 功率器件/模块存在可靠性瓶颈。这是因为这三种结构都是目前较为先进的封装结构,同时具有较低热阻、低电感的优良特性,但由于结构复杂,会增大整个封装体的内应力,降低其可靠性。使用 CTE 相匹配的封装材料或使用合适的灌封材料做缓冲层也许是有效的解决方案。

2)亟待开展 Cascode GaN HEMT 的双面散热结构的开发与封装可靠性研究。其中 E 型GaN HEMT 表面复杂的电极形状是其实现双面散热结构的最大阻碍。采用芯片嵌入式封装的方法实现双面散热或许是可行的方案。

3)亟待揭示 GaN 功率器件/模块中连接层材料与引线在热蠕变疲劳和热机械疲劳耦合作用下的失效模式、失效机理以及显微组织变化等。但是由于热蠕变和热机械应力耦合的试验条件难以实现,目前对于这一部分的研究仍是空白。可以考虑先从仿真研究入手,提供物理模型和仿真数据,为以后的试验研究打下基础。

4)亟需探索 GaN 功率器件/模块中引线失效形式以及提升其可靠性的方法。尤其值得注意的是,GaN 功率器件/模块的耐高温应用特性会增大引线产生热蠕变损伤的风险,聚焦其在高温下的蠕变疲劳行为开展研究更有研究价值。具体研究可以沿着温度梯度对引线与基板连接界面上晶粒塑性变形程度影响的路径去探索。

不难发现,问题(1)、(2)、(3)都是有关 GaN基功率器件/模块无引线封装型式可靠性方面的问题,是这一领域亟待解决的最关键问题。因为目前研究人员在追求 GaN 功率器件/模块的低杂散电感封装、低热阻封装型式的时候,往往并不能同时兼顾其在可靠性方面的性能,导致这些研究成果并不能很好的商业化应用。因此,解决新型 GaN 功率器件/模块封装型式的可靠性问题对于推进科研成果产业化具有重要意义。相比之下,问题(4)属于次要关键问题,因为该问题是关于引线键合封装型式的 GaN 功率器件/模块中引线的可靠性问题,然而目前引线在 GaN 器件/模块中使用频率越来越少,将来势必会被无引线封装型式取代。

来源:中国电机工程学报

作者:刘斯奇(天津大学)、梅云辉(天津工业大学)


路过

雷人

握手

鲜花

鸡蛋
返回顶部