请选择 进入手机版 | 继续访问电脑版

作者:刘双锋、孙芳芳

一、碳化硅 SiC 为第三代半导体材料


1.1 半导体材料市场广阔


半导体行业市场规模较大,产业链较长,技术门槛较高且应用广泛,是现代电子信息产业的基础。半导体 行业的产业链主要包括上游半导体材料、中游半导体元件以及下游应用领域。上游材料半导体材料是一类具有 半导体性能(导电能力介于导体与绝缘体之间)、可用来制作半导体器件和集成电路的电子材料。


中游半导体 元件主要包括集成电路、传感器、分立器件以及光电子器件,集成电路(IC)是一种微型电子器件或部件,通过特殊工艺把一个电路中所需的晶体管、电阻、电容和电感等元件及布线互连一起;传感器是实现自动检测和 自动控制的首要环节;分立器件是具有单一功能的电路基本元件,如晶体管、二极管、电阻、电容、电感等;光电子器件是光纤网络的构成要件,多应用于 5G 通信等领域。半导体元件可应用于下游消费电子、网络通信、 工业控制、新能源、轨道交通及光电显示等主要领域。


全球半导体产业规模呈现不断上升趋势,半导体材料是半导体产业链上游的主要组成部分。近年来全球半 导体产业规模呈现不断上升趋势,2014 至 2020年全球半导体销售额年复合增长率为 4.6%。中国半导体产业同样呈现规模持续扩大,在政策大力支持与下游应用快速繁荣等因素的推动下,2014 至 2020 年中国半导体销售 额年复合增长率达 8.7%,占全球半导体销售额比例由 2014 年的 27%上升至 2020 年的 34%,是当前全球最大 的半导体消费市场。半导体材料在集成电路和分立器件等半导产品生产制造过程中起关键作用。常见的半导体 制造材料包括硅(Si)、锗(Ge)等元素半导体及砷化镓(GaAs)、碳化硅(SiC)、氮化镓(GaN)等化合物半 导体材料,其中以碳化硅、氮化镓等化合物为材料的半导属于第三代化合物半导体材料。

半导体材料市场空间广阔,制造材料销售额占比不断提高。全球半导体材料销售额规模不断上升,2015 年至 2019 年复合增长率为 4.8%;中国大陆半导体材料市场快速增长,2015 至 2019 年复合增长率达 9.3%,占 全球半导体材料销售额比例不断攀升,由 2015 年的 14%增长至 2019 年的 16.7%。从材料类别来看,半导体制造材料销售规模占全部半导体材料销售额比例超50%,且呈现逐年上升的趋势,2015 至 2019 年制造材料销售 额复合增长率达 8.1%,而封装材料 2015 至 2019 年销售额复合增长率为-0.1%。


1.2 第三代半导体制造材料碳化硅性能优势突出


第一代半导体材料主要是指硅(Si)、锗(Ge)为代表的元素半导体材料,应用极为普遍,包括集成电路、 电子信息网络工程、电脑、手机等。其中,最典型的应用是集成电路,主要应用于低压、低频、低功率的晶体 管和探测器中。硅基半导体材料是目前产量最大、应用最广的半导体材料,90%以上的半导体产品是用硅基材 料制作的。但是硅材料的物理性质限制了其在光电子和高频电子器件上的应用,如其间接带隙的特点决定了它 不能获得高的电光转换效率;且其带隙宽度较窄,饱和电子迁移率较低,不利于研制高频和高功率电子器件, 硅基器件在 600V 以上高电压以及高功率场合就达到其性能的极限。


第二代半导体材料主要是以砷化镓(GaAs)、磷化铟(InP)为代表的化合物材料,目前手机所使用的关键 通信芯片都采用类似材料制作。砷化镓材料的电子迁移率约是硅的 6 倍,具有直接带隙,故其器件相对硅基器 件具有高频、高速的光电性能,因此被广泛应用于光电子和微电子领域,是制作半导体发光二极管和通信器件 的关键衬底材料。由于第二代半导体材料的禁带宽度不够大,击穿电场较低,限制了其在高温、高频和高功率 器件领域的应用。另外,由于砷化镓材料的毒性,可能引起环境污染问题,对人类健康存在潜在的威胁。


第三代半导体材料是指以碳化硅(SiC)、氮化镓(GaN)、氧化锌(ZnO)、金刚石、氮化铝(AlN)为代 表的宽禁带半导体材料,多在通信、新能源汽车、高铁、卫星通信、航空航天等场景中应用,其中碳化硅、氮 化镓的研究和发展较为成熟。与前两代半导体材料相比,第三代半导体材料禁带宽度大,具有击穿电场高、热 导率高、电子饱和速率高、抗辐射能力强等优势,因此,采用第三代半导体材料制备的半导体器件不仅能在更 高的温度下稳定运行,适用于高电压、高频率场景,此外,还能以较少的电能消耗,获得更高的运行能力。


碳化硅是由碳和硅组成的Ⅳ-Ⅳ族化合物半导体材料,具有多种同素异构类型,是世界上硬度排名第三的 物质,在热、化学和机械方面都非常稳定。在物理性质上,SiC 具有高硬度、高耐磨性、高导热率、高热稳定性以及散热性好的特点;在化学性质上,SiC 表面易形成硅氧化物薄膜以防止其进一步氧化,但在高温下该氧化膜会迅速发生氧化反应。


碳化硅的典型结构可分为两类,一类是闪锌矿结构的立方碳化硅晶型,称为 3CSiC 或 β-SiC,这里 3 指的是周期表性次序中面的数目;另一类是六角型或菱形结构的大周期结构其中典型的 有 6H-SiC、4H-SiC、15R-SiC 等,统称为 α-SiC。其中,4H-SiC 和 6H-SiC 是两种半导体所需的材料,碳化硅 与其他半导体材料具有相似的特性,4H-SiC 的饱和电子速度是 Si 的两倍,从而为 SiC 元件提供了较高的电流 密度和较高的电压,常被用来作为碳化硅功率器件。而 6H-SiC 和 4H-SiC 最大的差异在于 4H-SiC 的电子迁移 率是 6H-SiC 的两倍,这是因为 4H-SiC 有较高的水平轴(a-aixs)的移动率。在碳化硅晶体生长过程中需要精 确控制硅碳比、生长温度梯度、晶体生长速率以及气流气压等参数,否则容易产生多晶型夹杂,导致产出的晶 体不合格。


碳化硅在半导体中存在的主要形式是作为衬底材料,基于其优良的特性,碳化硅衬底的使用极限性能优于 硅衬底,可以满足高温、高压、高频、大功率等条件下的应用需求,当前碳化硅衬底已应用于射频器件及功率 器件。

1.3 碳化硅产业链详概况


近年来,以碳化硅晶片作为衬底材料的技术逐渐成熟并开始规模生产及应用。SiC 生产过程主要包括碳化 硅单晶生长、外延层生长及器件制造三大步骤,对应的是碳化硅产业链衬底、外延、器件三大环节。

1.3.1 衬底


衬底是所有半导体芯片的底层材料,主要起到物理支撑、导热及导电作用,碳化硅衬底主要包括导电型和 半绝缘型两类,二者在外延层及下游应用场景不同。作为导电型衬底材料,经过外延生长、器件制造、封装测 试,制成碳化硅二极管、碳化硅 MOSFET 等功率器件,适用于高温、高压等工作环境,应用于新能源汽车、 光伏发电、轨道交通、智能电网、航空航天等领域;作为半绝缘型衬底材料,经过外延生长、器件制造、封装 测试,制成 HEMT 等微波射频器件,适用于高频、高温等工作环境,主要应用于 5G 通讯、卫星、雷达等领域。


当前碳化硅衬底以 4、6 英寸为主,科锐公司已成功研发 8 英寸产品。在半绝缘型碳化硅市场,目前主流的衬底产品规格为 4 英寸;在导电型碳化硅市场,目前主流的衬底产品规格为 6 英寸。碳化硅衬底的尺寸(按 直径计算)主要有 2 英寸(50mm)、3 英寸(75mm)、4 英寸(100mm)、6 英寸(150mm)、8 英寸(200mm) 等规格。碳化硅衬底正在不断向大尺寸的方向发展,目前行业内公司主要量产衬底尺寸集中在 4 英寸及 6 英寸。在最新技术研发储备上,以行业领先者 WolfSpeed 公司的研发进程为例,WolfSpeed 公司已成功研发 8 英寸产 品。为提高生产效率并降低成本,大尺寸是碳化硅衬底制备技术的重要发展方向,衬底尺寸越大,单位衬底可 制造的芯片数量越多,单位芯片成本越低;衬底的尺寸越大,边缘的浪费就越小,有利于进一步降低芯片的成 本。由于现有的 6 英寸的硅晶圆产线可以升级改造用于生产 SiC 器件,所以 6 英寸 SiC 衬底的高市占率将维持 较长时间。

碳化硅晶体生长是碳化硅衬底制备的关键技术,目前行业采用主流的方法为物理气相传输法(PVT)。碳 化硅衬底行业属于技术密集型行业,是材料、热动力学、半导体物理、化学、计算机仿真模拟、机械等交叉学科应用,其制作过程首先是使晶体生长形成碳化硅晶锭,将其加工和切割形成碳化硅晶片后通过对晶片进行研 磨、抛光和清洗最终形成碳化硅衬底。碳化硅晶体生长是碳化硅衬底制备的关键点,SiC 单晶主要有物理气相 传输法(PVT)、顶部籽晶溶液生长法(TSSG)、高温化学气相沉积法(HTCVD)三种方法。


其中,TSSG 法 生长晶体尺寸较小目前仅用于实验室生长,商业化的技术路线主要是 PVT 和 HTCVD,而与 HTCVD 法相比, 采用 PVT 法生长 SiC 单晶具有所需设备简单、操作容易控制、设备价格以及运行成本低等优点。因此,PVT 法是目前工业生产晶体所采用的主要方法,WolfSpeed 公司、II-VI 公司、SiCrystal、天科合达、山东天岳等国 内外主要碳化硅晶片生产企业均采用 PVT 法,该法首先在高温区将材料升华,然后输送到冷凝区使其成为饱 和蒸气,最后经过冷凝成核而长成晶体。基于 PVT法制备碳化硅衬底的工艺流程主要包含原料合成、晶体生长、晶锭加工、晶体切割及晶片处理五大工艺流程。


1.3.2 外延


外延层是在晶片的基础上,经过外延工艺生长出特定单晶薄膜,衬底晶片和外延薄膜合称外延片。其中, 在导电型碳化硅衬底上生长碳化硅外延层制得碳化硅同质外延片,可进一步制成肖特基二极管、MOSFET、 IGBT 等功率器件,应用于新能源汽车、光伏发电、轨道交通、智能电网、航空航天等领域;在半绝缘型碳化 硅衬底上生长氮化镓外延层制得碳化硅基氮化镓(GaN-on-SiC)异质外延片,可进一步制成 HEMT 等微波射 频器件,应用于 5G 通讯、雷达等领域。在全球市场中,外延片企业主要有 II-VI、Norstel、WolfSpeed、罗姆 等 IDM 公司。近年来,国内瀚天天成、东莞天域、基本半导体已能提供 4 寸及 6 寸 SiC 外延片。


外延的质量受到晶体和衬底加工的影响,处在产业的中间环节,对产业的发展起到非常关键的作用。由于 碳化硅功率器件与传统硅功率器件制作工艺不同,不能直接制作在碳化硅单晶材料上,必须在导通型单晶衬底 上额外生长高质量的外延材料,并在外延层上制造各类器件,所以外延的质量对器件的性能是影响非常大。以 往器件大多是在低电压的环境工作,但随着碳化硅功率器件制造要求和耐压等级的不断提高,碳化硅外延材料 不断向低缺陷、厚外延方向发展。电压越大,所需要的外延就越厚,在 600 伏的低压情况下,器件需要的外延 厚度大约为 6μm;在中压 1200~1700 伏下,需要的厚度为 10~15μm;在 1 万伏以上的高压情况下,需要的厚度 为 100μm 以上。在核心参数方面,外延片核心参数厚度、掺杂浓度在低压、中压领域已经可以做到相对较优 的水平,但在高压领域,还有很多难题需要攻克,包括厚度、掺杂浓度的均匀性、三角缺陷等。在中低压应用 领域,碳化硅外延的技术相对成熟,基本可以满足中低压 SBD、MOS、JBS 等器件需求;在高压应用领域,器 件的类型趋向于使用双极器件。


碳化硅外延制备技术方面,当前主要的外延技术是化学气相沉积法(CVD),该法通过台阶流的生长来实 现一定厚度和掺杂的碳化硅外延材料,根据不同的掺杂类型,分为 n 型和 p 型外延片。碳化硅外延的生长参数 要求较高,受到设备密闭性、反应室气压、气体通入时间、气体配比情况、沉积温度控制等多重因素影响。而 第三代半导体中,由于氮化镓材料作为衬底实现规模化生产当前仍面临挑战,因此是以蓝宝石、硅晶片或碳化 硅晶片作为衬底,通过外延生长氮化镓器件。


1.3.3 碳化硅功率器件


碳化硅功率器件主要包含 SiC 功率二极管、SiC MOSFET 器件和碳化硅绝缘栅双极晶体管(SiC BJT/SiC IGBT)等 SiC 晶体管两大类。SiC 从上个世纪 70 年代开始研发,2001 年 SiC-SBD 开始商用,2010 年 SiCMOSFET 开始商用,而 SiC-IGBT 的商用仍存在挑战。随着 6 英寸 SiC 单晶衬底和外延晶片的缺陷降低和质量提 高,使得 SiC 器件制备能够在目前现有 6 英寸 Si 基功率器件生长线上进行,这将进一步降低 SiC 材料和器件成本,推进 SiC 器件和模块的普及。当前,国际上 600~1700VSiC-SBD、MOSFET 已经实现产业化,主流产品耐 压水平在 1200V 以下,封装形式以 TO 封装为主。价格方面,国际上的 SiC 产品价格是对应 Si 产品的 5~6 倍, 正以每年 10%的速度下降,随着上游材料纷纷扩产上线,未来 2~3 年后市场供应加大,价格将进一步下降, 预计价格达到对应 Si 产品 2~3 倍时,由系统成本减少和性能提升带来的优势将推动 SiC 逐步占领 Si 器件的 市场空间。


碳化硅功率二极管主要有肖特基二极管(Schottky Barrier Diode,SBD)、PIN 二极管(SiC-PIN)和结势垒控 制肖特基二极管(SiC-JBS)三种,主要应用在电力电源领域,工作在开关状态。(1)SiC-SBD 为肖特基势垒二 极管,利用金属与半导体接触形成的金属-半导体结原理制作的一种热载流子二极管,也被称为金属-半导体 (接触)二极管或表面势垒二极管,结构与硅肖特基势垒二极管基本相同,仅电子移动、电流流动。与 Si-SBD 相比,SiC-SBD 不仅拥有优异的高速性且实现了高耐压,Si-SBD 的耐压极限为 200V,而 SiC 具有硅 10 倍的击穿 场强。


此外,SiC-SBD 还拥有正向特性以及优异的 TRR 特性,而且几乎没有温度及电流依赖性。当前主流的 SiC-SBD 产品耐压极限为 1200V,同时罗姆公司在推进 1700V 耐压的产品。(2)SiC-PIN 是一个在射频和微波频段受偏置电流控制的可变阻抗器.它的结构有三层,在碳化硅半导体二极管的 P 结和N结中间夹着高阻值的本 征 I 层。与硅基 PIN 二极管相比,碳化硅 PIN 二极管具有高于硅的 2-3个数量级的开关速度、高结温承受能力、 高电流密度以及更高的功率密度。(3)由于 SBD 和 PiN 二极管为主的传统二极管己无法满足高频、大功率、低 功耗的市场需求,前者击穿电压低、反向漏电大,而后者高频特性较差,由此 JBS 应运而生,该结构将 SBD 结构 和 PiN 结构巧妙地结合在一起,具有高耐压、低压降、小漏电、高频特性好及强抗过压和浪涌电流能力,SiCJBS 较 Si-JBS 具有大电流密度、高工作结温的性能优势。

SiC MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)是以碳化硅为衬底的金属-氧化 物半导体场效应晶体管,可以广泛使用在模拟电路与数字电路的场效晶体管。在 300V 以下的功率器件领域, Si MOSFET 器件是首选,具有较为理想的栅极电阻、高速的开关性能、低导通电阻和高稳定性。在 SiC MOSFET 的开发与应用方面,与相同功率等级的 Si-MOSFET 相比,SiC MOSFET(以英飞凌产品为例)的优势有:


(1)开关损耗低,在 25℃结温下,SiC-MOSFET 关断损耗大约是 IGBT 的 20%,在 175℃的结温下,SiC MOSFET 关断损 耗仅有 IGBT 的 10%(关断 40A 电流),且开关损耗温度系数很小;(2)导通损耗低,当负载电流为 15A 时,在 常温下,SiC MOSFET 的正向压降只有 IGBT 的一半,在 175℃结温下,SiC MOSFET 的正向压降约是 IGBT 的 80%;(3)体二极管续流特性好,在常温及高温下,1200V SiC MOSFET 体二极管仅有 Si MOSFET 体二极管 Qrr 的 10%。因此,SiC MOSFET 电阻、开关损耗大幅降低,适用于更高的工作频率,另由于其高温工作特性,大大提 高了高温稳定性,由此在新能源汽车电机控制器、车载电源、太阳能逆变器、充电桩、UPS、PFC 电源等领域 有广泛应用。


碳化硅绝缘栅双极晶体管(Insulated Gate Bipolar Transistor , IGBT)是一种复合全控型电压驱动 式功率半导体器件,是能源变换与传输的核心器件。SiC IGBT 结合了 SiC MOSFET 和 SiC 晶体管的优点,得益 于 SiC 的宽禁带和极高的电压等级,SiC 基 IGBT 的性能与 Si 基 IGBT 最大的差别是动静态特性。正向性是静 态特性的重要组成部分,也就是导通特性,SiC IGBT 的正向导通电阻一般低于 Si IGBT 和 SiC MOSFET,主要 是由于其漂移区厚度小、电导调制更短所致,且 n 沟道 SiC IGBT 相较于 p 沟道的 SiC IGBT 正向特性更优。此 外,动态特性方面,与 Si IGBT 类似,SiC IGBT 由于其材料的特性,导致动态参数有所不同;门极驱动方面, SiC IGBT 的驱动和 Si 基 IGBT 在整体上差别不大,需要考虑到高绝缘性能、低耦合电容、低成本、尺寸、高 效率和高可靠性等因素。

对于 SiC IGBT,SiC 晶片质量、SiC/SiO2 界面特性、电磁干扰和短路耐受能力等却限制了它的使用,SiC IGBT 的制备存在一系列挑战。(1)碳化硅晶片的质量直接决定其 IGBT 器件的性能、可靠性、稳定性和产率。碳化硅晶圆中材料的固有缺陷和外延生长的结构缺陷会大大降低碳化硅 IGBT 的载流子寿命,高压 SiC 双极型 器件需要很长的载流子寿命来降低导通压降,此外,寿命分布不均匀、不同缺陷密度之间的权衡等各类问题同 样存在。大尺寸、高质量材料和低缺陷密度外延生长工艺都是实现 SiC IGBT 的关键。


(2)使用 SiO2 来作为栅极的氧化层,带来 SiC/SiO2 界面性能新问题。SiC IGBT 可以像 Si 基的一样较容易形成 SiO2 层,但是在氧化 的过程中,除了近界面陷阱外,还会引入额外的 C 簇,使得 SiC/SiO2 界面陷阱密度远大于 Si/SiO2,导致 SiCMOS的沟道迁移率大大降低;在 4H-SiC IGBT 中,SiO2 中的电场是 SiC 中的 2.5 倍,与 Si IGBT 相比,SiC IGBT中较高的临界电场使得 SiO2 的电场更高。(3)结端扩展(JTE)和场限环(FLRs)是目前 SiC IGBT 的两种主 要终端技术,前者主要用于低压器件,后者用于高压器件,但 FLRs 在高压器件中需要消耗很大的面积。(4) SiC IGBT 仍封装在线绑定的模块中,绑定线失效和焊料的失效是常见的寿命限制因素。因此,从 SiC IGBT 的 原材料到制备工艺到终端技术都存在阻碍 SiC IGBT 商业化的技术难点。


二、需求:下游产业链应用爆发,SiC 市场需求红利释放


2.1 SiC 市场处于成长期,规模增长迅速


第三代半导体高速发展,市场红利逐步释放。2019 年及以前,以 SiC 和 GaN 为主的第三代半导体材料处 于发展初期,晶圆设备开发、衬底外延制造、下游器件生产均处于研发阶段且尚未形成规模量产。随着美国、 韩国、日本等半导体强国大力进行第三代半导体的相关研发,2020 年在产业链下游应用爆发的推动下,第三 代半导体正式进入高速发展期。目前,SiC 衬底和外延技术已经可以应用于 8 英寸节点,相较于传统硅晶圆的 12 英寸来说仍有量级差距;SiC 功率器件(SBD、MOSFET)目前广泛用于新能源汽车、光伏、轨道交通等领 域,国际领先企业已实现 MOSFET 器件的量产。此外,中国也发布了多项半导体行业建设政策,旨在打造国 产先进半导体企业,这对第三代半导体的市场扩大具有积极意义。我们认为,第三代半导体已进入高速成长期, 市场红利正在逐步释放,下游应用领域的快速发展将推动 SiC 市场的高增长,并加剧行业竞争。

2.2 新能源汽车


目前,SiC 器件在 EV/HEV 上的应用主要包括电机驱动系统逆变器、电源转换系统(车载 DC/DC)、电动 汽车车载充电系统(OBC)及非车载充电桩等方面。基于 SiC 的解决方案使汽车电动系统效率更高、重量更 轻、结构更加紧凑,尽管碳化硅器件成本较高,但它推进了电池成本的下降和续航里程的提升,降低了单车成 本,无疑是新能源汽车最佳选择。其中,SiC SBD、SiC MOSFET 器件主要应用于 OBC 与 DC/DC,SiC MOSFET 主要用于电驱动。根据 WolfSpeed 预测,新能源汽车是 SIC 器件应用增长最快的市场,预计 2022- 2026 年的市场规模从 16 亿美元到 46 亿美元,复合年增长率为 30%,其中到 2026 年用于电机驱动逆变器仍是 最大市场,占比超过 80%。

电驱动系统一般由驱动电机、离合器、齿轮箱和差速器组成,这是纯电动汽车传动系统布置的常规形式。在新能源汽车中,功率器件是电驱动系统的主要组成部分,对其效率、功率密度和可靠性起着主导作用。目前, 新能源汽车电驱动部分主要就硅基功率器件组成。随着电动汽车的发展,对电驱动的小型化和轻量化提出了更 高的要求。当前,比亚迪、特斯拉等部分车型已经使用了碳化硅功率器件的电机驱动控制器。特斯拉处在碳化 硅器件应用的前列,其最新产品 Model S Plaid 便使用了以 SiC 为主要材料的电动逆变器,现已成为全球百米 加速最快的车型。此外,特斯拉旗下的 Model Y 和 Model 3 也均采用了 SiC MOSFET 逆变器技术,其续航能 力和逆变效率都有了显著提升,且在 2020 年全球新能源乘用车车型销量中均进入前十。比亚迪推出的“汉” EV 高性能四驱版本也配备了 SiC MOSFET 功率控制模块,是中国首个采用相关技术的车型。新能源汽车新秀 蔚来在 2021 年发布的纯电轿车中,也将会采用 SiC 模块作为电驱动平台。


电源转换系统 DC/DC 是转变输入电压并有效输出固定电压的电压转换器,DC/DC转换器分为三类:升压 型 DC/DC 转换器、降压型 DC/DC 转换器以及升降压型 DC/DC 转换器,车载 DC/DC 转换器可将动力电池输 出的高压直流电转换为低压直流电。基于碳化硅研制的功率器件,为氢能汽车燃料电池 DC/DC 变换器带来革 命性的创新。开关频率高、功率密度大是 SiC 基功率器件最为显著的优势,相比传统基于 IGBT 模块变换器产 品,开关频率提升 4 倍以上、功率密度提升 3 倍以上,系统平均效率大于 97%,最高效率可达 99%。


车载充电机(OBC)是完成将交流电转换为电池所需的直流电,并决定了充电功率和效率的关键部件。汽车由内燃机驱动转变为电驱动,最明显的变化就是发动机和油箱分别被电机和电池取代了,同时随之而来的 便是其它辅助器件的增加,如增加了 OBC 为电池充电。SiC SBD、SiC MOSFET 等器件可使得 OBC 的能量损 耗减少、热能管理改善。根据 WolfSpeed,相较于传统的硅基器件,OBC 采用碳化硅器件可使其体积减少 60%,BOM 成本将降低 15%。此外,双向逆变技术是未来 OBC 标配的功能之一,使 OBC 不仅可将 AC 转化 为 DC 为电池充电,同时也可将电池的 DC 转化为 AC 对外进行功率输出;将 OBC 及 DC/DC 等器件进行功能 集成化将会提高成本上、体积上的优势。


碳化硅材料性能上限高,与新能源车高度适配。目前,传统硅材料在 MOSFET、IGBT、功率 IC 等领域的 器件性能已经逐渐接近极限,已无法适应新兴市场快速发展的变革需要,基于宽禁带半导体 SiC 制造的功率器 件具有更为优越的物化性能。通过在导电型碳化硅衬底上生长碳化硅外延,即可得到适用于新能源汽车、光伏、 交通轨道等领域的功率器件。它们相较于硅基器件具有更高的工作温度、击穿电压以及优越的开关性质,其开 关频率和功率频率都轻易突破了传统材料的上限,因此广泛用于新能源汽车等领域。

在新能源汽车的应用中,SiC 功率器件主要具有以下特点:1)显著降低散热器的体积和成本:在主流的HEV(混合动力汽车)中,车载逆变器的散热器件具有两套水冷系统,冷却温度均在 75-105 摄氏度。由于碳 化硅具有的导热性能几乎为 Si 的三倍,因此在高温环境中 SiC-SBD 具有极佳的优势。若将两套冷却系统合二 为一,HEV 散热器的成本和体积就可以得到有效地改善;2)减小功率模块的体积:SiC功率器件的电流密度、 开关损耗都显著低于 Si 基器件,这使得同样的功率下,SiC-MOSFET 和 SiC SBD 可以在 100kHz 开关频率下工作。SiC功率器件的封装体积显著低于 Si-IGBT,同时高频工作环境也能够减少器件的成本;


3)提高系统效率:传统 Si-IGBT 的导通电阻较大,在开关过程中具有较大的反向电流,趋于稳定的过程中会产生巨大的损耗。SiC-SBD 器件则具有优越的正向压降和反向电流,可以有效降低器件的损耗,从而进一步提高系统效率。目 前,SBD 是新能源汽车领域应用最成熟的 SiC 器件,MOSFET 在国外范围内也得到了初步地生产和应用。实 际上,SiC-SBD/MOSFET 的耐压范围已经与 Si-SBD(FRD) / Si-MOSFE(IGBT)十分接近,由于耐压范围的全 覆盖,目前无需制作成本更高的 SiC-IGBT 器件,这也意味着碳化硅器件的性能上限要远高于硅基器件。


更多查看:第三代半导体碳化硅行业深度研究报告(下)


路过

雷人

握手

鲜花

鸡蛋
返回顶部