来源:宇文戬

本文由进化半导体材料有限公司供稿

目前,以碳化硅(SiC)和氮化镓(GaN)为代表的第三代半导体受到广泛的关注,人们对SiC在新能源汽车、电力能源等大功率、高温、高压场合,以及GaN在快充领域的应用前景寄予厚望,学术界、投资界和产业界都认可其将发挥传统硅器件无法实现的作用。

然而,SiC 和 GaN 并不是终点,近年来日本对氧化镓(Ga2O3,后简称GaO,与GaN对照)的研究屡次取得进展,使这种第四代半导体的代表材料走入了人们的视野,凭借其比 SiC 和 GaN 更宽的禁带、耐高压、大功率等更优的特性,以及极低的制造成本,在功率应用方面具有独特优势。因此,近几年关于氧化镓的研究又热了起来。

实际上,氧化镓并不是很新的技术,一直以来都有公司和研究机构对其在功率半导体领域的应用进行钻研。但受限于材料供应被日本两家公司垄断,研究受到比较大的阻碍,相关研发工作的风头都被后二者抢去。而随着应用需求的发展愈加明朗,未来对高功率器件的性能要求越来越高,人们更深切地看到了氧化镓的优势和前景,相应的研发工作又多了起来,氧化镓已成为美国、日本、德国等国家的研究热点和竞争重点。另一方面,我国在这方面的研究仍比较欠缺,在日本已经可以推出批量产品、我国国内市场每年翻倍的当下,国内产业化程度仍处于非常初级的阶段。

一、半导体材料的代际之分

首先我们先了解下各个代际半导体的情况:

1.第一代半导体材料主要是指硅(Si)、锗(Ge)的元素半导体材料。第一代半导体材料,尤其是硅,在半导体器件的发展和应用中牢牢占据着统治地位,是大规模集成电路、模拟IC、传感器等器件的材料基础,硅的加工技术是摩尔定律得以实现的基石。硅基芯片在电脑、手机、电视、航空航天、各类军事工程和迅速发展的新能源、硅光伏产业中都得到了极为广泛的应用,致使产业外的很多人一提到半导体以为指的就是硅。

2.第二代半导体材料主要是指砷化镓(GaAs)、磷化铟(InP)等的化合物半导体材料,此外还包含三元化合物半导体,如GaAsAl、GaAsP,还有一些固溶体半导体如Ge-Si、GaAs-GaP,玻璃半导体(又称非晶态半导体)如非晶硅、玻璃态氧化物半导体,有机半导体如酞菁、酞菁铜、聚丙烯腈等。

3.第三代半导体材料是指以碳化硅(SiC)、氮化镓(GaN)、氧化锌(ZnO)为代表的宽禁带半导体材料。在应用方面,根据第三代半导体的发展情况,其主要应用为半导体照明、电力电子器件、激光器和探测器、以及其他四个领域,每个领域产业成熟度各不相同。在前沿研究领域,宽禁带半导体还处于实验室研发阶段。

4.第四代半导体材料主要是以金刚石(C)、氧化镓(GaO)、氮化铝(AlN)为代表的超宽禁带(UWBG)半导体材料,禁带宽度超过4eV,以及以锑化物(GaSb、InSb)为代表的超窄禁带(UNBG)半导体材料。在应用方面,超宽禁带材料会与第三代材料有交叠,主要在功率器件领域有更突出的特性优势;而超窄禁带材料,由于易激发、迁移率高,主要用于探测器、激光器等器件的应用。

需要强调的是,实际上四个代际的半导体材料并不是后面的要取代前面,而是对硅材料形成了重要补充。

二、氧化镓材料的特性

氧化镓是金属镓的氧化物,同时也是一种半导体化合物。其结晶形态截至目前已确认有α、β、γ、δ、ε五种,其中,β相最稳定。

第四代半导体氧化镓的机遇与挑战

图:β相氧化镓晶体结构(网络)

业界与GaO的结晶生长及物性相关的研究报告大部分都使用β相,国内也普遍使用β相展开研发。β相具备名为“β-gallia”的单结晶构造。β相的带隙很大,达到4.8~4.9eV,这一数值为Si的4倍多,而且也超过了SiC的3.3eV 及GaN的3.4eV(表1)。一般情况下,带隙较大,击穿电场强度也会很大。β相的击穿电场强度估计为8MV/cm左右,达到Si的20多倍,相当于SiC及GaN的2倍以上,目前已有研究机构实际做出来6.8MV/cm的器件。

第四代半导体氧化镓的机遇与挑战

图:半导体材料特性(郝跃院士)

β相在展现出色的物性参数的同时,也有一些不如SiC及GaN的方面,这就是迁移率和导热率低,以及难以制造p型半导体。不过,目前研究表明这些方面对功率元件的特性不会有太大的影响。之所以说迁移率低不会有太大问题,是因为功率元件的性能很大程度上取决于击穿电场强度。就β相而言,作为低损失性指标的“巴利加优值(Baliga’s figure of merit)”与击穿电场强度的3次方成正比、与迁移率的1次方成正比。巴加利优值较大,是SiC的约10倍、GaN的约4倍。

Baliga性能指数是由原在美国General Electric从事多年功率半导体研发工作、现在美国北卡罗莱纳州州立大学担任名誉教授的Jayant Baliga先生提出的,用于Power MOS FET等单极元件(Unipolar Device)的性能评价。有将低频的理论损耗定量化的“BFOM (Baliga`s Figure of Merits)”和将高频的理论损耗定量化的“BHFFOM(Baliga`s High Frequency Figure of Merits)”。在功率半导体的研发领域,一般多实用低频的BFOM。

第四代半导体氧化镓的机遇与挑战

图:功率半导体材料对比(半导体行业观察译自PC.watch)

由于β相的巴利加优值较高,因此,在制造相同耐压的单极功率器件时,元件的导通电阻比采用 SiC 或 GaN 的低很多,有实验数据表明,降低导通电阻有利于减少电源电路在导通时的电力损耗。使用β相的功率器件,不仅能减少导通时的电力损耗,还可降低开关时的损耗,因为在耐压 1kV 以上的高耐压应用方面,可以使用单极元件。

第四代半导体氧化镓的机遇与挑战

图:在电流和电压需求方面Si,SiC,GaN和GaO功率电子器件的应用(Flosfia介绍)

比如,设有利用保护膜来减轻电场向栅极集中的单极晶体管(MOSFET),其耐压可达到 3k~4kV。而使用硅的话,在耐压为 1kV 时就必须使用双极元件,即便使用耐压较高的 SiC,在耐压为 4kV 时也必须使用双极元件。双极元件以电子和空穴为载流子,与只以电子为载流子的单极元件相比,在导通和截止的开关操作时,沟道内的载流子的产生和消失会耗费时间,损失容易变大。

在热导率方面,如果该参数低,功率器件很难在高温下工作。不过,实际应用中的工作温度一般不会超过 250℃,因此,实际应用当中不会在这方面出现大的问题。由于封装有功率器件的模块和电源电路使用的封装材料、布线、焊锡、密封树脂等的耐热温度最高也不过 250℃,因此功率器件的工作温度也要控制在这一水平之下。

再从另一个角度看,易于制造的天然衬底,载流子浓度的控制以及固有的热稳定性也推动了GaO器件的发展。相关论文表示,用Si或Sn对GaO进行N型掺杂时,可以实现良好的可控性。

尽管某些UWBG半导体(例如氮化铝AlN,立方氮化硼c-BN和金刚石)在BFOM图表中击败了GaO,但它们的材料制备、器件加工等环节受到了严格的限制。换而言之,AlN、c-BN和金刚石仍然缺乏大规模产业化的技术积累。

第四代半导体氧化镓的机遇与挑战

图:关键材料(Si,SiC,GaN,GaO)特性对比(IEEE)

相关统计数据显示,从数据上看,氧化镓的损耗理论上是硅的1/3,000、碳化硅的1/6、氮化镓的1/3,即在SiC比Si已经降低86%损耗的基础上,再降低86%的损耗,这让产业界人士对其未来有很高的期待。

第四代半导体氧化镓的机遇与挑战

图:GaO成本构成(Compound Semiconductor)

而成本更是让其成为一个吸引产业关注的另一个重要因素。

SiC晶锭的制作普遍采用PVT法,将固态SiC加热至2500℃升华后再在温度稍低的高质量SiC籽晶上重新结晶,核心难点在于:

1)加热温度高达2500℃,且SiC生长速度很慢(<1mm/h);

2)生长出的晶锭尺寸远远短于Si;

3)对籽晶要求很高,需要具备高质量、与所需晶体直径一致等特点;

4)SiC晶锭硬度较高,加工及抛光难度大;

基于SiC衬底,普遍采用化学气相沉积技术(CVD)获得高质量外延层,随后在外延层上进行功率器件的制造。由于SiC衬底晶圆相比Si具有更高的缺陷密度,会进一步干扰外延层生长,外延层本身也会产生结晶缺陷,影响后续器件性能。

GaO和蓝宝石一样,可以从溶液状态转化成块状(Bulk)单结晶状态。实际上,通过运用与蓝宝石晶圆生产技术相同的导模法EFG(Edge-defined Film-fed Growth),日本NCT已试做出最大直径为6英寸(150mm)的晶圆,直径为2英寸(50mm)的晶圆已经开始销售作研究开发方向的用途。这种工艺的特点是良品率高、成本低廉、生长速度快、生长晶体尺寸大。

另一家Flosfia使用的“雾化法”已制作出4英寸(100mm)的α相晶圆,成本已接近于硅。而碳化硅( SiC )与氮化镓 (GaN)材料目前只能使用“气相法”进行制备,未来成本也将继续受到衬底高成本的阻碍而难以大幅度下降。对于 GaO来说,高质量与大尺寸的天然衬底,相对于目前采用的宽禁带 SiC 与 GaN 技术,将具备独特且显著的成本优势。

三、氧化镓的研发及产业化现状

因为拥有如此多的优势,氧化镓被看作一个比氮化镓拥有更广阔前景的技术。

据市场调查公司--富士经济于2019年6月5日公布的Wide Gap 功率半导体元件的全球市场预测来看,2030年氧化镓功率元件的市场规模将会达到1,542亿日元(约人民币92.76亿元),这个市场规模要比氮化镓功率元件的规模(1,085亿日元,约人民币65.1亿元)还要大!

在SiC或GaN方面,从产业链分工的角度来看,目前Cree、Rohm、ST都已形成了SiC衬底→外延→器件→模块垂直供应的体系。而Infineon、Bosch、OnSemi等厂商则购买衬底,随后自行进行外延生长并制作器件及模块。

在氧化镓方面,日本在衬底-外延-器件等方面的研发全球领先。不过研究氧化镓功率元件并进行开发的并不是上述范畴的大中型功率半导体企业,而是初创企业。

1、日本

据日本媒体2020年9月报道,日本经济产业省(METI)正准备为致力于开发新一代低能耗半导体材料“氧化镓”的私营企业和大学提供财政支持。METI将为2021年留出大约2030万美元的资金,预计未来5年的投资额将超过8560万美元。METI认为,日本公司将能够在本世纪20年代末开始为数据中心、家用电器和汽车供应基于氧化镓的半导体。一旦氧化镓取代目前广泛使用的硅材料,每年将减少1440万吨二氧化碳的排放。

资料显示, 日本功率元件方向的氧化镓研发始于以下三位:日本国立信息通信技术研究所(NICT:National Institute of Information and Communications Technology)的东胁正高先生、京都大学的藤田静雄教授、田村(Tamura)制作所的仓又朗人先生。

NICT的东胁先生于2010年3月结束在美国大学的赴任并返回日本,以氧化镓功率元件作为新的研发主题并进行构想。

京都大学的藤田教授于2008年发布了氧化镓深紫外线检测和Schottky Barrier Junction、蓝宝石(Sapphire)晶圆上的外延生长(Epitaxial Growth)等研发成果后,又通过利用独自研发的“雾化法”薄膜生产技术(Mist CVD法)致力于研发功率元件。

仓又先生在田村(Tamura)制作所负责研发LED方向的氧化镓单晶晶圆,并将应用在功率半导体方向。

三人的接触与新能源·产业技术综合开发机构(NEDO)于2011年度提出的“节能革新技术开发事业—挑战研发(事前研发一体型)、超耐高压氧化镓功率元件的研发”这一委托研发事业有一定关联,接受委托的是NICT、京都大学、田村制作所等。可以说,由这一委托开启了GaO功率元件的正式研发。

2011年,京都大学投资成立了公司“FLOSFIA”。在2015年,NICT和田村制作所合作投资成立了氧化镓产业化企业“Novel Crystal Technology”,简称“NCT”。现在,两家公司都是日本氧化镓研发的中坚企业,必须强调的是,这也是世界上仅有的两家能够量产GaO材料及器件的企业,整个业界已经呈现出“All Japan”的景象。

(1)Flosfia

2011年由京都大学投资成立,在2017年获得B轮融资750万欧元(500万英镑),2018年三菱重工和电装等大企业已经联名参与了其C轮融资,累计融资接近5亿人民币。

在对成本要求严格的电动汽车、“廉价化”的家电等数码机器方面,碳化硅和氮化镓即使性能卓越,制造商也难以接受其价格,成本问题阻碍着产业界对新半导体的材料的导入。FLOSFIA公司的“喷雾干燥法”(MistDry)先将氧化镓溶解于某种几十种配方混合而成的溶液里,然后将溶液以雾状喷在蓝宝石衬底上,在蓝宝石基板上的溶液干燥之前,就形成了氧化镓结晶。这样通过从液态直接获得GaO衬底,不需要高温、超洁净的环境,实现了超低成本制造GaO。

第四代半导体氧化镓的机遇与挑战

第四代半导体氧化镓的机遇与挑战

图:MistCVD原理图( Electronics Weekly)

这种溶液常温下是液体,蒸发温度不需要达到1,500度,几百度就足够,而且制作结晶的环境是在常温空气中,没有任何高成本的环节。如果考虑做小尺寸,有望可以制造出和硅同样价格、比硅性能更好的半导体。

第四代半导体氧化镓的机遇与挑战

图:直径为4英寸的蓝宝石衬底上形成的Ga 2 O 3薄膜(FLosfia官网)

从官网可以看到,公司在2015年所首发的肖特基势垒二极管(SBD)已经送样,而其521V耐压器件的导通电阻仅为0.1mΩ/cm2,855V耐压的SBD导通电阻仅为0.4mΩ/cm2,损耗仅为SiC的1/7,由此足以见证新材料器件的优势。

第四代半导体氧化镓的机遇与挑战

图:Flosfia制作的超低导通电阻SBD(FLosfia官网)

因为材料属性的原因,有专家认为用氧化镓无法制造P型半导体。但京都大学的Shizuo Fujita与Flosfia合作在2016年成功开发出了具有蓝宝石结构的GaO常关型晶体管(MOSFET)。

第四代半导体氧化镓的机遇与挑战

图:常关GaO MOSFET的IV曲线(FLosfia官网)

常关型MOSFET 的第一个α相GaO由N +源/漏极层、p型阱层、栅极绝缘体和电极组成。从IV曲线外推的栅极阈值电压为7.9V。该器件由新型p型刚玉半导体制成,其起到反型层的作用。团队在2016年发现p型氧化铱Ir 2 O3,终于制作出了常关GaO MOS。

第四代半导体氧化镓的机遇与挑战

图:常关型GaO MOSFET器件横截面示意图(FLosfia官网)

第四代半导体氧化镓的机遇与挑战

图:常关型GaO MOSFET的光学显微照片(FLosfia官网)

FLOSFIA总部位于日本京都,专门从事雾化学气相沉积(CVD)成膜。利用氧化镓的物理特性,FLOSFIA致力于开发低损耗功率器件。该公司成功开发了一种SBD,其具有目前可用的任何类型的最低特定导通电阻,实现与降低功率相关的技术,比以前减少了90%。

2018年,电装与FLOSFIA宣布合作研发新一代功率半导体设备,旨在降低电动车用逆变器的能耗、成本、尺寸及重量。

同样也是在2018年,电装与Flosfia决定共同开发面向车载应用的下一代Power半导体材料氧化镓(α相GaO)。据电装表示,通过这两家公司对面向车载的氧化镓(α相GaO)的联合开发,电动汽车的主要单元PCU的技术革新指日可待。此技术将对电动汽车的更轻量化发展及节约能源降低耗电起到积极作用,从而实现人、车、环境和谐共存。

第四代半导体氧化镓的机遇与挑战

图:Flosfia GaO评估板(集微网)

据EE Times Japan报道,FLOSFIA在2019年12月11日-13日召开的“SEMICON Japan 2019”上展示了GaO功率器件和评估板,并计划于2020年进行全球范围内首次GaO肖特基势垒二极管的量产。FLOSFIA方面称目前常关型GaO MOSFET的沟道迁移率已远远超过了商用SiC,让这项技术和产品有望应用于需要安全性的各种电源中,并有望应用在电动汽车和消费级快充中,和SiC拥有同等水平或以上性能的GaO MOSFET价格也会更便宜。Flosfia计划2021年实现GaO器件量产,业界正拭目以待。

(2)Novel Crystal Technology(以下简称NCT)

NCT成立于2015年,公司所采用的方案是基于HVPE生长的GaO平面外延芯片,他们的目标是加快超低损耗、低成本β相GaO功率器件的产品开发。

资料显示,NCT已经成功开发,制造和销售了直径最大为4英寸的氧化镓晶片。而在2017年11月,NCT与田村制作所(Tamura Corporation)合作成功开发了世界上第一个由氧化镓外延膜制成的沟槽型MOS功率晶体管,其功耗仅为传统硅MOSFET的1/1000。

第四代半导体氧化镓的机遇与挑战

图:氧化镓沟槽MOS型功率晶体管的示意图(NCT官网)

按照他们的规划,从2019财年下半年开始,NCT将开始提供击穿电压为650V的β相GaO沟槽型SBD的10-30A样品。他们还打算从2021年开始推进大规模生产的准备工作。公司还致力于快速开发100A级别的β相GaO功率器件。

此外,日本早稻田大学采用FZ法生长出β-Ga2O3单晶。在单晶生长过程中通入适量O2抑制β-Ga2O3分解,晶体生长速度为1~5mm/h,直径最大为2.54cm,长度约为50mm。

2、美国

(1)空军研究室(AFRL)

美国空军研究室在2012年注意到了NICT的成功,研究员Gregg Jessen领导的团队探索了GaO材料的特性,结果显示,GaO材料的速度和高临界场强在快速功率开关和射频功率应用中具有颠覆性的潜力。在这个成果的激励下,Jessen建立了美国的GaO研究基础,获得了首批样品。

第四代半导体氧化镓的机遇与挑战

图:AFRL制作的2英寸带有GaN外延层的Synoptics 氧化镓晶体管(Compound Semiconductor)

此后,Kelson Chabak接任团队负责人,他们从唯一的商业供应商Tamura采购了衬底,并联系了Tamura投资的NCT购买外延片,同时也从德国莱布尼茨晶体生长研究所(IKZ)采购外延片。

Chabak表示:“我们之所以能够成为该领域的领导者,是因为我们能够尽早获得材料”。

AFRL在2016年报告了一个有IKZ外延片制作的MOSFET,该器件在0.6um的G-S漂移区内承载电压高达230V,意味着平均临界场强达到了3.8MV/cm,大约是4倍于GaN的临界场强,成为了“燎原之火”。

更重要的是,Chabak指出GaO的低热导率并不会阻碍其成为主流射频功率器件的因素,并用一些模型证明了倒装芯片技术和背面减薄技术相结合,可以让器件热阻达到接近SiC的水平。


路过

雷人

握手

鲜花

鸡蛋