2.2. 行业特性二:IDM模式与委外代工共存,技术迭代与产 能供给齐飞


半导体行业内主要存在 IDM与垂直分工两种经营模式。IDM模式即垂 直一体化模式,是指半导体企业除进行半导体设计外,业务范围还包 括芯片制造、封装和测试等所有环节。垂直分工模式则是将各个环节 划分开来,各家公司只专注经营一个环节,例如 Fabless 模式则仅专注 于半导体的设计和销售环节,而芯片制造和封装测试则交给 Foundry 模 式的纯代工企业。


对于半导体产品公司而言,采用 IDM模式对企业技术、资金和市场份 额要求较高,具有典型的重资产属性。公司不仅自身需要拥有研发设 计团队,还需自建芯片制造、封装和测试生产线,在完成半导体的设 计、芯片制造、封装测试等环节后销售给下游客户。自建芯片制造和 封装测试生产线就需要巨额的资金投入,如投资建设一条 8 英寸芯片制 造产线的资金约 30 亿元人民币,因此采用 IDM 模式的企业往往除了拥 有较强的研发技术实力外,还必须拥有雄厚的资本实力。在垂直分工 经营模式下采用 Fabless 模式仅需专注于从事产业链中的芯片设计和销 售环节,能够相对有效控制投入和成本。垂直分工模式在数字逻辑集 成电路领域取得了快速的发展。


功率行业中公司既有 IDM模式,也有垂直分工模式。国外IDM模式公 司有英飞凌、ON Semi、TI、STMicro、东芝等;国内公司 IDM 模式公司有华微电子、士兰微、华润微等。垂直分工模式中的 Fabless 包括新 洁能、斯达等;Foundry 则包括华虹半导体、世界先进、中芯国际等。


功率半导体采用 IDM模式的主要优势:


(1)IDM模式具有技术的内部整合优势,有利于积累工艺经验,形成 核心竞争力。其研发及生产是一项综合性的技术活动,涉及到产品设 计与工艺研发等多个环节相结合,IDM 模式在研发与生产的综合环节 长期的积累会更为深厚,有利于技术的积淀和产品群的形成,从而有 助于形成更强的市场竞争力。


(2)IDM模式具备资源的内部整合优势,针对客户定制化需求,IDM 模式能协同优化设计与制造环节,缩短产品开发时间。因为功率半导 体属于对工艺特色化、定制化要求较高的半导体产品,对设计、制造 以及封装工艺环节结合的要求更高。在 IDM 企业内部,公司可以通过 构建主要产品工艺技术平台,衍生开发细分型号产品,并持续升级产 品工艺平台,形成了“构建-衍生-升级”的良性发展模式,从而使得公司 细分型号产品能够快速、“裂变式”产生,满足下游多个领域的需求,最 终引致公司经营规模迅速增长。相比 Fabless 模式经营的竞争对手,公 司能够有更快的产品迭代速度和更强的产线配合能力,同时也可以根 据客户需求进行高效的特色工艺定制。


(3)制造环节重要性高,IDM模式享受更高产品附加值。功率半导体 属于特色工艺产品,定制化要求较高,且细分产品出货量较低。如果 将功率半导体交给晶圆厂进行代工,无法达到足够的规模效应,成本 较高。更重要在于公司将制造环节全部囊入公司业务,赚取了本该属 于晶圆厂的利润,有利于提高公司产品原有的产品附加值。


但 IDM具有明显的重资产属性,在扩大营收,巩固主要营收市场方面 具有较大的约束性。随着全球新兴产品的爆发以及以中国为代表的区 域性需求的快速扩张,纯 IDM 公司产能供给无法有效跟上终端需求;另外由于半导体行业的周期性,纯 IDM 公司极容易受制于原有固定产 能,陷入被动局面。因此 IDM模式+委外代工共存是商业模式未来的发展方向,既能随市场波动及时扩大或减少产能,也可以就近满足区域 性市场需求。


2.3. 行业特性三:细分需求多样化,依赖特色工艺平台的 全面性和深度性


“平台化多样性”是特色工艺企业构筑竞争壁垒、打造竞争优势的核 心武器,工艺平台越强大的企业,其在技术经验、服务能力和特殊化 开发能力方面具有深厚的优势。


功率半导体行业细分需求多样化,从大类产品平台,到不同电压、不 同面积、不同封装外形,交叉组合可形成千余种细分产品。以新洁能 的产品布局为例,公司主要分为四大产品平台:沟槽型功率 MOSFET、 超结功率 MOSFET、屏蔽栅功率 MOSFET 和 IGBT;每个平台下又根据 不同的电压、不同的结构进行分类;之后为了满足客户的要求,需要 调整芯片面积、采用多达三十余种封装外形以及进行单管、功率模块 或者智能功率模块的集成封装,因此近二十个子工艺平台叠加不同电 压系列、不同面积系列以及不同封装系列,交叉组合会得到 1000 余款 细分型号的产品。


功率半导体产品由于根据客户定制要求所产生的的细分需求多样化, 但各细分类型需求量相对 IC产品较小,因而公司要想在行业内获得足 够的市场竞争力,对于特色化工艺平台的全面性和深度性要求极高。


3.趋势一:电车及光伏是功率半导体需求增长主动力


新能源汽车渗透及光伏加速建设是功率半导体市场快速增长的最主要 驱动力。电动车:从 ICE(内燃车)到 MEV(轻度混合动力汽车),再从 MEV 到 BEV(电池电动汽车),单辆电动车内部的功率器件数量在不断增加, 再加上配套设备充电桩所含有的功率器件数量,单车驱动的功率器件 规模大幅增长。光伏:受益于“碳中和”成为大国共识叠加发电成本下降,全球光伏 装机量亦将持续快速提升,功率半导体作为逆变器核心器件,亦将迎 来量价齐升。


3.1. 电车:汽车迈向纯电动化,功率半导体量价齐升


3.1.1. 新能源汽车持续放量,汽车电动化大势所趋


电动汽车主要分为 MHEV、PHEV与 BEV三种大类。MHEV为轻度混 合动力汽车,只是在发动机上安装小型电动机,帮助改善发动机的启/ 停过程;PHEV 为插电式混合动力汽车,同时利用电动机与发动机进行 驱动,且可以利用外接电源进行充电;BEV 为纯电动汽车,利用蓄电 池存储动力,利用电动机进行电能驱动。


随技术不断完善及全球政府的大力推进,新能源汽车未来有望保持较 高增速:供给端来看。特斯拉等造车新势力通过打造全新的用户体验及产品模 式,倒逼传统厂商向新能源转型,形成良性循环,大量优质新能源车 型被纷纷推向市场。需求端来看:购车群体对新能源车逐步产生认识叠加政府的大力推进, 新能源汽车消费人群逐步起量。因此,新能源车未来有望逐步替代传 统能源汽车,成为汽车市场增长的主要驱动力。


2021年全球新能源车出货量快速增长。进入2021年后,全球出货量快 速增长,截至 2021 年上半年,全球新能源车出货量超过 250 万辆,预 计全年增速将超过50%。从出货结构看,纯电动和插混动力占据全球约 99%份额,氢燃料电池汽车占比约为 1%。


分地区来看,中国是全球最大市场之一,2021增速较快。2020年,中 国占据全球新能源汽车出货 41.27%,欧洲这一份额为 43.06%,二者是全球最大的新能源汽车市场。从销售结构来看,国内纯电动车占据新能 源汽车销量比重为81.6%,混合动力车占比为18.60%,氢燃料电池汽车 占比仅为 0.07%。


销量增长有望持续,拉动上游汽车电子需求。随着技术的不断成熟与 成本的显著下降,新能源汽车的用户体验得到了显著的提升,随着消 费者需求不断释放,未来中国乃至全球新能源汽车销量将维持长期高 速增长,行业进入高景气周期,预计 2021-2026 年的 CAGR 将接近 30%。随着下游新能源汽车需求不断释放,汽车电子作为新能源车产业链的 上游有望充分受益。


3.1.2. 汽车电动化核心元件,功率半导体量价齐升


功率半导体在汽车中主要负责能量转换,电动车功率半导体用量提升。燃油车的功率半导体应用场景主要包括启停模块、车灯、引擎、车身、 音响控制、防盗以及动力传输系统等。而对于电动车而言,功率半导 体用量在燃油车的基础上显著提升,主要增量体现在车载充电系统 (OBC)、电池管理(BMS)、高压负载、高压转低压 DCDC、主驱动 等,用量相比于传统燃油车显著提升,将成为电动车核心元件之一。


相比燃油车,电动车功率半导体复杂度亦显著提升。燃油车功率器件 电压等级低,40 V的功率 MOSFET 即可满足 EPS (电动助力转向系统) 和 EPB (电子驻车制动系统) 等核心安全系统要求。此外,燃油车动力 总成电压往往在 30 V左右,电助力制动器电压 70 V左右,单车平均电 气功率不超过 20 kW,因此高性能车规低压 MOSFET 即可满足车辆低 功耗需求。


而对于新能源汽车而言,相比于传统能源车多出了主电机驱动、DCDC、 OBC、车载电动空调、电池管理(BMS)等部件,其中纯电动主电机 驱动功率往往可超过 100 kW,发电机功率平均达到 30 kW,单车平均 功率要远超出传统燃油汽车。此外,与传统汽车不同的是,由于较高 的驱动功率、电压以及高能耗敏感度,电动车厂往往会采用导通压降 小、工作电压高的 IGBT 模块,而非在传统燃油车中采用的 MOSFET,单车功率半导体复杂度亦将呈现显著提升。


随着电动车加速渗透,功率半导体单车价值量上升趋势明显。根据英 飞凌、strategy analytics 和 IHS Markit 的统计数据,ICE(内燃车)内功 率半导体价值 71 美元,总成本占比不足 10%;而 PHEV和 BEV 二者平 均功率半导体价值量为 330 美元,占总成本的 39.56%,相比 ICE 的功 率半导体价值量增加了约 240 美元。


3.1.3. 车规级功率空间广阔,IGBT和 MOSFET增速快


IGBT及 MOSFET是汽车功率半导体价值量提升的主要推力。传统汽 车中蓄电池电压主要为 12 V或 24 V,分立功率器件主要被应用于调节 各低压工作单元的通断,因此最常用的分立器件是 MOSFET,用以控 制车灯、天窗、雨刷等模块。而对于电动车来说,动力电池电压往往 要大于 300 V,且平均功率亦显著提升(这意味着流经功率模块电流显 著提升),因而往往在关键环节会使用能够适应高电压、大电流的 IGBT 模块,同时 MOSFET 的用量及价值量亦显著上升。在下文中,我们主 要对新能源汽车的 5 大增量模块进行梳理。


对大多数车型而言,电驱逆变器核心部件是 IGBT和 FRD。逆变器可 选的方案主要为硅 MOSFET、IGBT 以及 SiC 方案,MOSFET 主要应用 于 A00 级车型,市场占有率较低,且未来有望被 IGBT 所取代。SiC 目 前受限于高成本及产能释放,3-5 年维度来看难以大规模放量,因此 IGBT 是电驱逆变器最为主流的方案。


以典型主控功率逆变器为例,IGBT和 FRD用量大。以单驱为例,旺 材电机与电控披露,英飞凌的部分产品由六桥臂单元(内含 6 组 IGBT、 6 组 FRD)构成,其中每个桥臂包含 3 颗 IGBT 芯片、3 颗 FRD 芯片, 共计 18 颗 IGBT 和 18 颗 FRD。


高压转低压 DC-DC:开关元件主要是 MOSFET,功率二极管用量多。该模块几乎被应用于所有新能源车型中,功率范围在 2 kW 左右,其主 要作用是取代传统汽车中的 12V发电机,将动力电池的高压电转换为低 压电,随后被低压蓄电池收集。此外,部分方案可能会 采用 IGBT 作为开关器件。


OBC:中高端产品采用 IGBT,中低端为 MOSFET方案。OBC的主要 作用是将充电桩交流电转换为动力电池所需要的直流电,并依据 BMS 提供的数据,实现对电压、电流等参数的动态调节。IGBT 单管或者高 压 MOSFET 等开关器件则是 OBC 中实现 DC-DC 转换模块的核心开关 器件。


电池管理(BMS):核心分立器件为 MOSFET。BMS主要用来可监控 并调节电动车电池的充放电过程,通过对电池的电压、温度、容量、 荷电状态等指标的监测,实现对剩余电量的有效利用并避免电池的过 充损耗。在电动车中,每一电池组往往都有其独立的 BMS 系统,用以 确保行车安全。


新能源汽车 MOSFET、IGBT 单车价值量提升,市场空间快速增长。MOSFET 来看,根据 Yole 数据及我们的测算,新能源汽车(EV/HEV) 的 MOSFET 单车价值量有望达到 31美金,相比于传统燃油汽车的 19美 金,增长约 12 美金。IGBT 来看,结合全球汽车销量和 Yole,我们预估 2020 年新能源汽车(包括 EV和 HEV)单车 IGBT 价 值量约为 204 美金。进一步,在新能源汽车拉动下,国内电动车 IGBT 市场空间从 2020 年的 2.0 亿美金成长至 2026 年的 22.3 亿美金,CAGR 为 49.9%。MOSFET 市场来看,由于燃油车亦采用 MOSFET 功率器件, 我们测算 2020 年国内车规 MOSFET 市场空间为 5.0 亿美金,2026 年将 达到 6.5 亿美金,2020-2026 年 CAGR 为 4.6%。


核心假设:假设国内汽车出货量平均每年 2500 万辆,采用Si-MOSFET 逆变器车型 2020-2026 出货量预估为 20/28/32/35/40/42/44 万辆,SiC MOSFET 逆 变 器 车 型 在 2020-2026 年 出 货 量 占 比 分 别 为
15.0%/11.4%/12.4%/15.4%/18.4%/20.4%/22.4%。此外,综合考虑新能源 汽车逐步在中端及高端车型渗透,以及 IGBT 厂商的降价,假设 2020- 2026 年新能源汽车 IGBT 价值量保持稳定。


此外,充电基础设施是电动车必不可少的配套设施,其内部也含有较 大数量的功率器件。以典型的直流充电桩为例,三相交流380V输入电 压经过两路 AC/DC 电路并联后,得到 800V直流母线电压,然后经过两 路全桥 LLC DC/DC 电路,输出 250V到 950V(或 750V)高压给电动汽 车充电使用,从拓扑电路来看,充电桩包含的功率器件较多。


充电基础设施的充电效率越高,则对充电功率要求越高,继而需要的功率器件也越多。根据英飞凌的数据,随着DC充电系统的功率的增大, 充电时间不断减小,但每个 DC 充电系统所含的功率器件价值处于上升 趋势。20 kW 充电系统所含功率器件主要为 Si 基,价值 40 美元;150 kW 充电系统所含功率器件也主要为 Si基,价值 300 美元;而 350 kW 充电系统所含功率器件变为 SiC 基,价值3500 美元,价值相较于20 kW 充电系统提升明显。因此整个电动车系统所需的功率器件不仅包含电 动车本身所拥有的,也包含充电桩内所必需的,因此电动汽车的发展 所带动的功率器件市场,超过我们单纯依据电动车内功率器件价值量 所算出的增量市场。


3.2. 光伏:全球光伏装机量提升,推动功率半导体需求增长

3.2.1. 光伏装机量快速提升,逆变器需求将迎爆发

光伏逆变器是太阳能光伏系统的心脏。光伏逆变器主要由输入滤波电 器、DC/DC MPPT 电路、DC/AC 逆变器、输出滤波电路、核心控制单 元电路组成。逆变器在光伏电站中占据核心地位,是连接电网和光伏 系统的关键枢纽,其主要功能是将太阳电池组件产生的直流电转化为 交流电,并入电网或供负载使用。逆变器的性能对电站运行平稳性、 发电效率和使用年限都会产生直接影响。此外,逆变器还负责整个光 伏系统的智能化控制,能够通过最大功率电追踪(MPPT)显著提升系 统发电效率,对系统状态进行监控、调节和保护。

集中式逆变器和组串式逆变器占据装机规模近90%的份额,是当前行 业主流。光伏逆变器的发展过程中,出现了集中式逆变器、集散式逆 变器、组串式逆变器和微型逆变器四大类,当前集中式和组串式逆变 器占据近 90%的装机规模。

集中式逆变器体积大、功率高,通常功率在 500kW 以上,只适用于大 型地面集成式光伏电站。组串式逆变器体积小、易安装、功率小,功 率略小于集中式逆变器,可调节多块光伏组件的电流输出,适用于分 布式光伏系统。随着技术发展,组串式逆变器逐渐也可用于大功率电 站场景,叠加其安装方便等优势,渗透率迅速提升。2020 年国内组串 式逆变器出货量已占据市场 65%以上的份额。

乘政策之东风,全球光伏市场方兴未艾。随着全球多个国家陆续提出 碳中和的相关政策,光伏发电在全球的能源占比未来将不断提升。全 球来看,光伏发电不仅在欧美日等发达地区蓬勃发展,在中东、南美 等地区也在快速起量,目前已经成为清洁、低碳并具备一定价格优势 的发电形式。2021 年,在光伏发电成本持续下降 及全球政府大力支持等有利因素的推动下,全球光伏新增装机量有望 快速增长。

国内光伏市场空间广阔。2020年,国内光伏新增装机48.2GW,创历史 第二高,同比增加 60.1%。2020 年由于受到疫情影响,20H1 新增光伏 装机规模较少的情况下,下半年光伏装机快速发展,12 月单月新增光 伏装机规模达到 29.5 GW,创历史新高。

光伏新增装机放量叠加存量替代空间扩大,逆变器渗透率提升。光伏 新增装机速度逐年提升,市场需求不断扩大,作为光伏电站系统核心 的逆变器有望迎来量价齐升。此外,存量市场方面,考虑到光伏逆变 器寿命一般在 10 年左右,当前存量替换需求主要来自 2010 年前后分布于欧洲地区的光伏装机。国内光伏装机于 2013 年起腾飞,因此预计未 来 2-3 年国内存量替换市场也将不断扩大。如果假设存量替代为 10 年 前的新增规模,则未来存量替代亦将显著拉动光伏逆变器的需求。综 上,光伏装机增量与存量的相互作用,将带动光伏逆变器渗透率不断 提升、市场空间显著扩大。

更多详见:功率半导体:新能源需求引领,行业快速发展(三)


路过

雷人

握手

鲜花

鸡蛋
返回顶部