摘 要

碳化硅 (SiC) 具有禁带宽、临界击穿场强大、热导率高、高压、高温、高频等优点。应用于硅基器件的传统封装方式寄生电感参数较大,难以匹配 SiC 器件的快速开关特性,同时高温工况下封装可靠性大幅降低,为充分发挥 SiC 器件的优势需要改进现有的封装技术。针对上述挑战,对国内外现有的低寄生电感封装方式进行了总结。分析了现有的高温封装技术,结合新能源电力系的发展趋势,对 SiC 器件封装技术进行归纳和展望。

1 引言

随着我国的能源占比和能源消费方式由以化石能源为主转变为以电能氢能等清洁能源为主[1-2]2020年 月,习近平主席在联大宣布:中国将采取更加有力的政策和措施,二氧化碳排放力争于2030 年前达到峰值,努力争取 2060 年前实现碳中和。2021 年 月,中央财经委员会第九次会议提出构建以新能源为主体的新型电力系统

碳化硅(SiC)禁带宽临界击穿场强大热导率高,是第三代半导体的典型代表,SiC 材料器件已经列入国家十四五科技规划,其具有电压高损耗低耐高温工作等优势,对于电力电子装备高效化小型化具有重要作用

SiC 材料的这些优良特性,需要通过封装来实现功率和信号高效可靠的连接,才能在电力电子装备中得到完美展现,而传统的硅基器件封装技术在应用于SiC 器件时面临着如寄生电感过高和高温下性能退化等问题本文总结了几种低寄生电感封装技术及高温封装技术,并对 SiC 器件在新能源电力系统中的发展进行了分析和展望

2 低寄生电感封装技术

2.1 芯片无应力封装

为降低高压 SiC 模块的寄生电感,同时消除芯片表面的应力,全球能源互联网研究院提出了一种寄生电感极低的封装结构 ZPOCZero Pressure on Chip)封装,ZPOC 封装示意图如图 所示;随后联研院采用ZPOC 封装结构,基于正向参数匹配与芯片并联,研制了 6.5 kV/100 A SiC SBD 器件;结合 SiC SBD 串联技术,实现 支器件串联,研制了 39 kV/100 A SiC SBD组件,并在 24 kV 换流阀功率模块中得到应用

应用 ZPOC 封装技术的模块使用了焊接与压接相结合的封装形式,具有双面散热易于串联电磁兼容等优势,加入三代半交流群,加vx:tuoke08,可以有效降低模块在封装过程中引入的寄生电感,经实验测得封装寄生电感为 3.56 nH,对改善模块的开关特性具有显著优势

2.2 三维(3D)封装

3D 封装(示意见图 2)技术将 SiC 模块的上桥臂直接叠加在下桥臂,上下叠加后可以减小桥臂中点的连接线(见图 3),该封装技术可将模块寄生电感降至1 nH 以下

2010 年格勒诺布尔电气工程实验室 VAGNON利用 3D 封装技术搭建了单相 400 V/40 A 高频(HF)整流器及 Buck 变换器模块实验结果表明采用 3D 封装技术后 IGBT 在关断时仅有 10%的电压过冲,且在导通时几乎没有欠压因此 3D 封装技术可以基本消除共源极电感,同时共模电流也得到了很好的抑制

2015 年,欧洲研发中心的 REGNAT[10]提出了一种基于印刷电路板(PCB)嵌入式芯片技术的新型 3D封装利用 PCOC(片上电源)技术将 SiC MOSFET 芯片嵌入 PCB 内部实现较低的电感路径和共模电容文献[10]搭建了如图 所示的模块,该模块具有30 mm×30 mm×2 mm 厚的 PCB,上下表面为 105 μm铜平面,模块边缘有 16 个去耦电容为了在阻抗测量期间对开关状态下的换向单元进行建模,在前环和后环中未填充的芯片位置通孔的加和减端之间实现了短路测量连接器位于两个自由边上,因此只需反转模块即可测量前换向环路和后换向洛普阻抗测量结果为前环的功率环路电感为 0.23 nH,后环的电感为0.21 nH,因此采用嵌入式芯片技术的 PCOC 模块可实现紧凑高密度的功率模块,同时可大幅降低回路的寄生电感,使其适用于具有快速导通和关断时间的宽禁带半导体器件(如SiC 等)

3D 封装技术消除了模块中的键合线,可以有效提高器件的功率密度,充分发挥 SiC 器件的高频优势同时采用 3D 封装技术可以降低回路的寄生电感值,减小模块体积,从而推进电力电子器件走向高频高效高功率密度

2.3 DBC+PCB 混合封装

传统焊接型模块封装使用覆铜陶瓷板(Direct Bonded Copper, DBC),芯片只能在表面上布局,大电流回路面积使得降低模块的寄生电感变得非常困难

因此 CPES、华中科技大学等[11-12]将 DBC 工艺和 PCB板相结合,在芯片上通过键合线的连接方式引到PCB板上,这样可以直接在 PCB 层间实现控制换流回路,通过减小模块电流回路来减小寄生电感参数

弗吉尼亚理工大学的陈正等人采用如图 所示的 DBC+PCB 混合封装的横截面结构,使用多层 PCB来代替原有的聚酰亚胺-通过切割 PCB 来嵌入半导体芯片,使得 PCB 和器件都可以连接到相同的DBC 基板上,随后使用键合线将器件的顶部电极连接到 PCB 上的顶部铜排

与传统工艺相比,DBC+PCB 混合封装具有许多优点。1)封装的 PCB 层可以采用标准的 PCB 制造工艺,并且可以在单个回流焊工艺中与半导体芯片一起焊接到基板上,这大大简化了混合模块的制造工艺。2)通过增加电路板的铜层和使用通孔盲孔甚至埋孔通孔,可以在 PCB 上实现更复杂的布线,使得开关电流路径可以更灵活地控制,同时提供了在模块中嵌入栅极驱动器电路的可能性。3)混合封装技术通过减小电流回路面积来降低寄生电感参数混合模块的寄生电感仅为分立式 TO-247封装方式的 10%~20%。同时与传统的引线键合模块相比,环路电感降低35%,模块体积减小约 40%。

华中科技大学的黄志召设计了如图 所示的混合模块,该结构包括 AlN 陶瓷基板、FPC 和 SiC 芯片芯片通过 FPC 上的窗口焊接在底层 DBC 上以提升散热能力;芯片和 FPC 同时焊接在 DBC 上,芯片的上表面电极经由键合线连接在 FPC 上,通过过孔来连接FPC 的上下层铜箔由于换流回路经过的导体存在于FPC 的不同导体层,且电流流向相反形成互感抵消回路;采用薄 FPC 增强互感作用,从而可极大地降低主回路的寄生电感

该混合模块通过下管换流回路的阻抗测试结果,由该结果计算出主回路总电感为 3.8 nH。同时开通关断的 du/dt 分别为 37.38 V/ns 和 37.65 V/ns,可证明使用 DBC+PCB 混合封装技术降低了模块驱动回路的寄生电感和共源电感两种混合封装形式均可以有效降低模块的寄生电感参数并提升模块的散热能力

2.4 适用于单芯片的翻转贴片封装

目前商业化的 SiC 功率芯片多为垂直型芯片,因此基于 BGA 的封装技术,阿肯色大学的 SEAL 团队提出了一种适用于单芯片的翻转贴片封装技术,将芯片背面电极通过金属连接件翻转到和芯片正面电极同一平面,使用焊锡固定各自电极(见图 7

翻转贴片封装省去了键合线和功率端子,可以有效降低模块的体积,从而减小封装中的材料成本与常用的 TO-247 封装相比,该封装的体积减小至原体积的 7.02%,导通电阻降低 24%。

2.5 柔性 PCB+ 双面烧结混合封装

双面烧结技术与传统的芯片焊接和引线键合组件相比可靠性更高塞米控公司的 KASKO通过栅极和源焊盘布局栅极焊盘位置和隔离栅极电阻和芯片金属化的调整,组装了如图 所示的具有极低电感(1.4 nH)的新型 1200 V/400 A SiC MOSFET 模块

混合封装模块中芯片和柔性箔的 DBC 间的寄生电感为 0.45 nH,柔性箔到带有螺旋弹簧的直流母线的连接间的寄生电感为 0.85 nH。

柔性 PCB+ 双面烧结混合封装与相同功率等级的传统模块相比,总寄生电感下降 91.3%。而在动态特性方面,混合封装模块开通关断过程中的 du/dt 和 di/dt分别为 53 kV/μs 和 67 kA/μs。同时与相同功率等级的62 mm IGBT 模块相比,混合封装模块的总开关损耗仅为 IGBT 模块的 20%。

2.6 平面互连技术

为降低器件的导通电阻和寄生电感,西门子公司开发了平面互连技术 SiPLIT Siemens Planar Interconnect Technology采用平面互连技术的 SiC器件如图 所示

与引线键合方式相比,平面互连技术的芯片接触面积高达 90%,并提供了更大的横截面因此,采用平面互连技术芯片的封装电阻降低了 25%;此外与引线键合跨越的环路相比,互连的共面结构仅覆盖了很小的电流环路区域,从而使互连的寄生电感降低了50%。SiPLIT 技术能够克服厚铝线键合带来的性能和可靠性限制实验结果证明该技术可以有效降低封装中的电阻电感和热阻,并有效改善 EMI 性能

3 高温封装技术

3.1 双面散热技术

双面封装工艺通过在模块芯片上下表面均焊接DBC 板或者使用银烧结技术将芯片一面与 DBC 焊接另一面连接铝片来实现更好的散热双面封装技术不仅可以改善电路板边缘场强分布,还可以降低EMI 及桥臂中点的对地寄生电容,因而在新能源电动车内部的模块中有着较强的应用需求

株洲中车的王彦刚等研发了具有双面冷却的650 V/600 A SiC 半桥 DSC 汽车电源模块,将功率芯片的两侧粘合到具有隔离能力的平面部件上,金属垫片直接粘合在芯片顶部,粘接界面通过焊接或银烧结工艺形成与单面冷却无底板模块相比,热阻减少了30%。

田纳西大学的 YANG 等设计了一种具有双面散热的低寄生电感 SiC 功率模块(如图 10 所示),采用岛式基板布局,与传统封装相比,新封装的功率环路电感从 6.59 nH 降低到 2.6 nH,降幅达到 60%以上

CREE 的 LIANG设计了如图 11 所示的双面散热模块,两个冷板(冷却器)直接粘合到这些基板外部,从而允许模块双面集成散热采用相位桥接线电气拓扑结构的电源开关采用面朝上 面朝下互连配置与传统模块相比,这一模块将这些寄生效应相关的损耗降低了 75%,模块组件的双面散热将比热电阻率降低到 0.33 cm·2 ℃/W,与传统模块相比降低了 38%。该模块的电流密度达到 220 A/cm2,达到传统模块的 1.52

与传统封装相比,双面散热技术的优点在于可以有效降低模块的热阻,从而提升模块的散热能力及电流密度;进而可以有效降低系统中散热组件的体积,提升系统整体的功率密度

3.2 低压烧结工艺 + 铜线键合技术


路过

雷人

握手

鲜花

鸡蛋