(2)美国纽约州立大学布法罗分校(UB)

据外媒报道,2020年4月,美国纽约州立大学布法罗分校(the University at Buffalo)正在研发一款基于氧化镓的晶体管,能够承受8000V以上的电压,而且只有一张纸那么薄。该团队在2018年制造了一个由5微米厚(一张纸厚约100微米)的氧化镓制成的MOSFET,击穿电压为1,850 V。该产品将用于制造更小、更高效的电子系统,应用在电动汽车、机车和飞机上。

3、德国

关于德国开展氧化镓研究的报道较少,目前仅看到德国莱布尼茨晶体生长研究所(IKZ)2009年开始研发和生长GaO晶体,使用提拉法,采用铱金坩埚,包括活动的铱金后加热器,生长出的晶体直径为2英寸,长度为40~65mm,晶体的结晶特性较好。此外,其也为美国AFRL供应了GaO外延片。

4、中国

我国其实开展氧化镓研究已经十余年,但是直到近年来46所的技术突破才实现了距离产业化“一步之遥”,从公开资料能了解到目前从事GaO材料和器件研究的单位和企业,主要是中电科46所、西安电子科技大学、上海光机所、上海微系统所、复旦大学、南京大学等高校及科研院所,科技成果转化的公司有北京镓族科技、杭州富加镓业。国内团队未见关于GaO MOS的报道。

(1)中电科46所

据观察者网在2019年2月的报道,中国电科46所经过多年氧化镓晶体生长技术探索,通过改进热场结构、优化生长气氛和晶体生长工艺,有效解决了晶体生长过程中原料分解、多晶形成、晶体开裂等问题,采用导模法成功在2016年制备出国内第一片高质量的2英寸氧化镓单晶,在2018年底制备出国内第一片高质量的4英寸氧化镓单晶。报道指出,中国电科46所制备的氧化镓单晶的宽度接近100mm,总长度达到250mm,可加工出4英寸晶圆、3英寸晶圆和2英寸晶圆。这也是目前为止国内唯一能够达到该尺寸的记录保持者。

(2)西电大学/微系统所

据中国科学院上海微系统与信息技术研究所报道,在2019年12月,中国科学院上海微系统与信息技术研究所研究员欧欣课题组和西安电子科技大学郝跃课题组教授韩根全携手,在氧化镓功率器件领域取得了新进展。欧欣课题组和韩根全课题组利用“万能离子刀”智能剥离与转移技术,首次将晶圆级β相GaO单晶薄膜(400nm)与高导热的Si和4H-SiC衬底晶圆级集成,并制备出高性能器件。报道指出,该工作在超宽禁带材料与功率器件领域具有里程碑式的重要意义。首先,异质集成为GaO晶圆散热问题提供了最优解决方案,势必推动高性能GaO器件研究的发展;其次,该研究将为我国GaO基础研究和工程化提供优质的高导热衬底材料,推动GaO在高功率器件领域的规模化应用。

(3)复旦大学

在2020年6月,复旦大学方志来团队在p型氧化镓深紫外日盲探测器研究中取得重要进展。报道表示,方志来团队采用固-固相变原位掺杂技术,同时实现了高掺杂浓度、高晶体质量与能带工程,从而部分解决了氧化镓的p型掺杂困难问题。

(4)北京镓族科技

资料显示,北京镓族科技有限公司成立于2017年年底,是国内首家、国际第二家专业从事第四代(超宽禁带)半导体氧化镓材料开发及应用产业化的高科技公司,是北京邮电大学的唐为华老师从2011年以来致力于氧化镓材料及器件形成科研成果的产业化平台。

公司研发和生产基于新型超宽禁带半导体材料氧化镓的高质量单晶与外延衬底、高灵敏度日盲紫外探测器件、高频大功率器件,已与合作单位一起已经实现1000V耐压的肖特基二极管模型制作,并已经实现5000V耐压的MOSFET模型制作,开发出氧化镓基日盲紫外探测器分立器件和阵列成像器件,为深紫外光电器件提供了良好解决方案,可支持极弱火焰和极弱电弧实时检测等,并已推出系统化模块。公司已申请40余项专利,完成了产业中试的前期技术、人员、软硬件等量产化要求的所有准备工作。公司拥有厂房面积1500平米,涵盖完整的产业中试产线,具备研发和小批量生产能力,初步构建了氧化单晶衬底、氧化镓异质/同质外延衬底生产和研发平台。未来将不断完善晶体生长、晶体加工、外延薄膜性能测试、微纳加工、联合研发等六大平台搭建。

(5)杭州富加镓业

据官网信息,公司成立于2019年12月,注册资金500万,是由中国科学院上海光学精密机械研究所与杭州市富阳区政府共建的“硬科技”产业化平台——杭州光机所孵化的科技型企业。

富加镓业专注于宽禁带半导体材料研发,公司核心创始人具有中科院博士、剑桥大学博士等材料领域的深厚背景,团队成员主要来自中国科学院、美英海归等业内资深人才,研发人员中硕士以上比例达到80%;公司厂房面积八千余平米,拥有多台大尺寸导模法晶体生长炉、多气氛晶体退火炉、高精密抛光机等仪器设备,为公司的发展提供了基础支撑和持续创新动力硬件保证。

富加镓业最初技术来源于中科院上海光机所技术研发团队,该团队是我国最早从事氧化镓晶体生长的团队,从04年开始即开展研究。富加镓业专业从事氧化镓单晶材料设计、模拟仿真、生长及性能表征等工作,形成了较鲜明的特色和优势。我们注重知识产权保护和氧化镓相关基础探索研究工作,在全球范围内对氧化镓晶体材料生长及上下游应用领域的专利进行布局,申请进入欧盟、美国、日本、韩国、新加坡等国家。团队的氧化镓晶体材料及器件基础研究成果,多篇科研论文已发表在国际顶级学术期刊上,与全球科研工作者共享最新研究成果,共同推动全球第四代半导体相关行业的发展。

(6)其他

山东大学采用金属有机化学气相沉积(MOCVD)法研究了β相GaO薄膜的生长及其光学性质。北京邮电大学、电子科技大学、中山大学也分别独立开展了β相GaO薄膜及日盲紫外探测器的研究,已取得了一些重要的研究成果,但基本未见在晶体材料方面的相关报道。

5、其他

印度的Raja Ramanna先进技术中心采用类似EFG的方法,生长出直径5~8mm、长度40~50mm的低缺陷β相GaO单晶,(400)面XRC半高宽约为0.028°。

葡萄牙圣地亚哥大学采用激光加热浮区法生长出了离子掺杂和非掺的低缺陷β相GaO晶体光纤。

随着电动车和便携式用电的需求成为主流,功率器件的重要程度日益提高,而日本已经明显在第四代半导体的氧化镓材料方面处于领先优势,日本半导体界也将GaO作为日本半导体产业“复兴的钥匙”,已在国内掀起研发和应用的热潮。与此同时,美国、中国、欧洲等也正在试图追赶,可以想到的是,美日双方从材料供应到技术合作必然要比中日合作更加深入,这场功率器件竞赛已然拉开帷幕,而中国将可能独自前行。

四、功率半导体的行业特征适合氧化镓器件的爆发式增长

功率半导体用于所有电力电子领域,市场成熟稳定且增速缓慢。但是,业界对于更大功率(充放电更快)、更高效节能(减少发热更安全环保)、更小体积和重量(更便携易安装维护)以及更低成本(更广阔的应用和市场)的追求是永无止境的。因此近年来,新能源汽车、可再生能源发电、变频家电、快充等新应用领域迎来了新的巨大增长点。

①行业特征一:不需要追赶摩尔定律,一般使用0.18~0.5um制程即可,倚重材料质量,对材料和器件的生产工艺要求高,因整体趋向集成化、模块化,需要开发新的封装设计。

l 设计环节:功率半导体电路结构简单,不需要像数字逻辑芯片在架构、IP、指令集、设计流程、软件工具等投入大量资本。

l 制造环节:因不需要追赶摩尔定律,产线对先进设备依赖度不高,整体资本支出较小。

l 封装环节:可分为分立器件封装和模块封装,由于功率器件对可靠性要求非常高,需采用特殊设计和材料,后道加工价值量占比达35%以上,远高于普通数字逻辑芯片的10%。目前,根据在研项目和产品布局看,国内企业开始向价值量更高的中高端产品转型。

②行业特征二:功率半导体行业一般采用IDM模式,更适合企业做大做强。上游的衬底、外延企业虽可以成为单独环节,但如特征一所述,工艺占比很高,芯片设计和制造环节是要集成在一起的,否则将丧失技术进步的能力,并且产能受到限制,因此委外代工仅可作为低端产品的产能补充。

③行业特征三:新能源车等新兴应用不断推动新半导体材料兴起。

氧化镓单晶材料在功率电子器件方面具有极大的应用潜力。典型的应用领域包括:电动汽车、光伏逆变器、高铁输电、军用电磁轨道炮、电磁弹射、全电舰艇推进等;除此之外,氧化镓自身即有不错的射频特性,当前由于低成本及与GaN的低失配的特性,还可用于GaN材料的外延衬底,GaN及HEMT具有功率密度高、体积小、可工作在40GHz等优点,是5G基站攻略放大器的首选材料。因此,5G行业的迅速发展也将带动氧化镓单晶衬底产业的迅速发展。

新能源、5G等新兴应用加速第三代和第四代半导体材料产业化需求,我国市场空间巨大且有望在该领域快速缩短和海外企业的差距。

①天时:第四代材料在高功率、高频率应用场景具有配合第三代半导体取代硅材的潜力,行业整体都处于产业化起步阶段。

②地利:受下游新能源车、5G、快充等新兴市场需求以及潜在的硅材替换市场驱动,目前深入研究和产业化方向以SiC和GaN为主,GaO的技术储备较弱,真正有技术的公司面对的竞争压力小。

③人和:第四代半导体核心难点在材料制备,材料端的突破将获得极大的市场价值,可获得国家在政策和资金方面的大力支持。

五、我国发展氧化镓的机遇与挑战

第四代半导体氧化镓的机遇与挑战

从Yole的报道中可以看出,绿色线代表的GaO尺寸以前所未有的斜率快速增长,这得益于其材料可以通过上文提到的液相法进行生长,且已经接近目前SiC和GaN的最大商用化尺寸。

硅基材料经过了50年的发展,达到了目前的12寸。

SiC材料的最大尺寸记录是近日更名为Wolfspeed的美国Cree公司所推出的8英寸衬底样品,其尚未导入大规模商业化,产业界刚刚准备规模化生产基于6英寸衬底的功率器件。

由于国内LED产业的高度发展,业界基于8英寸硅基GaN的功率电子器件发展相对较快。

如此看来,GaO很有可能在尺寸方面,即大规模制造的可能性和成本方面对上述造成后来者居上的威胁。

第四代半导体氧化镓的机遇与挑战

图:GaO与SiC成本对比(EE POWER)

成本方面,从同样基于6英寸衬底的最终器件的成本构成来看,基于GaO材料的器件成本为195美金,是SiC材料器件成本的约五分之一,已与硅基产品的成本所差无几。

目前我国正在大力发展第三代半导体SiC和GaN,对GaO刚刚开始关注,产业界、投资界对这种材料的特性和应用还未像前两种材料一样熟稔,有了解者也想当然认为SiC和GaN发展了数十年才达到现在的规模,那么GaO势必也还需要十年甚至数十年的发展才能大规模应用。这样的想法可能会导致我们失去国内技术和市场发展的先机。

六、缩写

NICT:日本国立信息通信技术研究所National Institute of Information and Communications Technology

NCT:新奇晶体技术公司Novel Crystal Technology

IKZ:德国莱布尼茨晶体生长研究所

AFRL:美国空军研究实验室Air Force Research Laboratory

Tamura:日本田村制作所

参考文献

1.FLOSFIA 开发GaO MOSFET沟道迁移率远超商用SiC(集微网)

2.Gallium oxide power device firm gets £5m in second-round funding(Electronics Weekly)

3.AFRL: Breaking Records With Gallium Oxide(Compound Semiconductor)

4.Gallium Oxide’s Glorious Potential(Compound Semiconductor)

5.Gallium Oxide Could Have Lower Cost than SiC, NREL Analysis Reveals(EE POWER)

6.Gallium Oxide: Power Electronics’ Cool New Flavor(IEEE)

7.2020年半导体将很有趣(PC.Watch)

8.FLOSFIA和GaO半导体的沟道迁移率超过SiC(Flosfia)

9.什么是Mist Dry方法?(Flosfia)

10.成功使用氧化镓外延膜开发了世界上第一个沟槽式MOS型功率晶体管(NCT)

11.碳化硅(SiC):功率半导体产业发展新机遇(第三代半导体联合创新孵化中心)


路过

雷人

握手

鲜花

鸡蛋
返回顶部